首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   29篇
  国内免费   6篇
化学工业   78篇
机械仪表   1篇
能源动力   16篇
轻工业   33篇
石油天然气   3篇
一般工业技术   2篇
  2023年   7篇
  2022年   9篇
  2021年   8篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   9篇
  2016年   8篇
  2015年   13篇
  2014年   14篇
  2013年   10篇
  2012年   8篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
31.
Dark fermentation of sugarcane vinasse can be used as a “cleaning” step to remove sulfate prior to methanogenesis because sulfidogenic conditions can be successfully established in parallel with biohydrogen production. Using a 22 central composite rotational design (CCRD) and response surface methodology (RSM), this study assessed the impacts of bicarbonate and sulfate availability on the establishment of sulfidogenesis in the thermophilic (55 °C) fermentation of vinasse in batch reactors, equally assessing the impacts on biohydrogen evolution. CCRD-RSM results indicated the favoring of biohydrogen production at the lowest sulfate and bicarbonate concentrations, whilst the opposite was observed for sulfidogenesis. Glycerol, lactate, and hydrogen were the preferential electron donors utilized by sulfate-reducing bacteria (SRB), whilst ethanol was markedly consumed only at high sulfate concentrations. SRB were inhibited by sodium when dosing excess NaHCO3 and Na2SO4. Complementary tests revealed maximum biohydrogen production (2.40 mmol) out of the CCRD, at pH exceeding 7.5 with no interference of sulfidogenesis. Non-efficient biohydrogen production was observed at low pH (<5.0; ~1.90 mmol) because the uptake of lactate was inhibited. Meanwhile, homoacetogenesis was established under intermediate pH range (5.5–6.5), as revealed by the accumulation of acetate (up to 2.5 g L?1). 16S rRNA gene amplicon sequencing further revealed the genera Thermoanaerobacterium/Pseudoclostridium, Desulfotomaculum/Desulfohalotomaculum and Sporomusaceae/Moorella as the main biohydrogen-producing, sulfate-removing and biohydrogen-consuming (homoacetogens) microbial groups, respectively. Hence, using a single inoculum source, vinasse may provide a butyrate-rich (along with biohydrogen-rich biogas) or a sulfate-free and acetate-rich fermented effluent, depending mainly on proper pH control.  相似文献   
32.
BACKGROUND: The catalytic processes for valorizing the bio‐oil obtained from lignocellulosic biomass pyrolysis face the problem that a great amount of carbonaceous material is deposited on the catalyst due to the polymerization of phenol‐derived compounds in the crude bio‐oil. This carbonaceous material blocks the catalytic bed and contributes to rapid catalyst deactivation. This paper studies an on‐line two‐step process, in which the first one separates the polymerizable material and produces a reproducible material whose valorization is of commercial interest. RESULTS: The establishment of a step for pyrolytic lignin deposition at 400 °C avoids the blockage of the on‐line catalytic bed and attenuates the deactivation of a HZSM‐5 zeolite based catalyst used for hydrocarbon production. The origin of catalyst deactivation is coke deposition, which has two fractions (thermal and catalytic), whose content is attenuated by prior pyrolytic lignin separation and by co‐feeding methanol. The morphology and properties of the material deposited in the first step (pyrolytic lignin) are similar to lignins obtained as a by‐product in wood pulp manufacturing. CONCLUSIONS: The proposed reaction strategy, with two steps (thermal and catalytic) in series, valorizes the crude bio‐oil by solving the problems caused by the polymerization of phenolic compounds, which are obtained in the pyrolysis of the lignin contained in lignocellulosic biomass. Given that a by‐product (pyrolytic lignin) is obtained with similar properties to the lignin from wood pulping manufacturing, the perspectives for the viability of lignocellulosic biomass valorization are promising, which is essential for furthering its implementation in biorefinery processes. Copyright © 2009 Society of Chemical Industry  相似文献   
33.
The challenges of implementing biorefineries on a global scale include socioeconomic, financial, and technological constraints. In particular, the development of biorefineries is tightly linked to the continued availability of fermentation raw materials. These constraints can be relaxed by the use of diverse raw materials, while advances that confer higher flexibility would enable biotechnological plant managers to swiftly react to volatile markets. In conventional processes, Saccharomyces cerevisiae grows on a relatively limited range of substrates, and produces only a single product—ethanol. Given the observed maturity of the S. cerevisiae fermentation technology, alternatives to baker's yeast may be needed to tip the economic balance in favour of biotechnological ethanol. These alternative fermentation technologies may allow a greater diversity of substrates to be used to produce an individually tailored mix of ethanol and other chemicals. Copyright © 2007 Society of Chemical Industry  相似文献   
34.
35.
36.
本文首先介绍了硫酸盐浆厂生产纸浆过程中CO2的排放来源,进一步分析了“林浆一体化”企业的整体碳足迹,然后综述了温室气体排放核算方法,并介绍了硫酸盐浆厂的CO2捕获及利用技术研究进展,包括黑液中酸析木质素的生产、沉淀碳酸钙的生产、塔罗油的提取、木质素纳米颗粒的生产等。最后探讨了将硫酸盐浆厂与生物质精炼厂相结合以进一步降低碳排放的可能性。  相似文献   
37.
38.
OVERVIEW: The development of innovative methods to efficiently convert biomass to fuels and industrial chemicals is one of the grand challenges of the current age. n‐Butanol is a versatile and sustainable platform chemical that can be produced from a variety of waste biomass sources. The emergence of new technologies for the production of fuels and chemicals from butanol will allow it to be a significant component of a necessarily dynamic and multifaceted solution to the current global energy crisis. IMPACT: The production of butanol from biomass and its utilization as a precursor to a diverse set of fuel products has the potential to reduce petroleum use worldwide. In concert with other emerging renewable technologies, significant reductions in greenhouse gas emissions may be realized. The rapid incorporation of renewables into the world fuel supply may also help to offset predicted increases in transportation fuel prices as the supply of oil declines. APPLICATIONS: Recent work has shown that butanol is a potential gasoline replacement that can also be blended in significant quantities with conventional diesel fuel. These efforts have transitioned to research focused on the development of viable methods for the production of an array of oxygenated and fully saturated jet and diesel fuels from butanol. The technologies discussed in this paper will help drive the commercialization and utilization of a spectrum of butanol based sustainable fuels that can supplement and partially displace conventional petroleum derived fuels. Published 2010 by John Wiley and Sons, Ltd.  相似文献   
39.
Bioethanol is an alternative to fossil fuels in the transportation sector. The use of pellet for heating is also an efficient way to mitigate greenhouse gas emissions. This paper evaluates the techno‐economic performance of a biorefinery system in which an existing combined heat and power (CHP) plant is integrated with the production of bioethanol and pellet using straw as feedstock. A two‐stage acid hydrolysis process is used for bioethanol production, and two different drying technologies are applied to dry hydrolysis solid residues. A sensitivity analysis is performed on critical parameters such as the bioethanol selling price and feedstock price. The bioethanol production cost is also calculated for two cases with either 10 year or 15 year payback times. The results show that the second case is currently a more feasible economic configuration and reduces production costs by 36.4%–77.3% compared to other types of poly‐generation plants that are not integrated into existing CHP plants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号