首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   29篇
  国内免费   6篇
化学工业   78篇
机械仪表   1篇
能源动力   16篇
轻工业   33篇
石油天然气   3篇
一般工业技术   2篇
  2023年   7篇
  2022年   9篇
  2021年   8篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   9篇
  2016年   8篇
  2015年   13篇
  2014年   14篇
  2013年   10篇
  2012年   8篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
61.
林基生物质精炼将更多的木材组分加以利用,转化为更多的化学制品和能量载体,实现林基生物质资源高效的工业化利用。其中关键技术在于传统造纸行业未充分利用的半纤维素。近年来国内外的科研机构和学者着力于半纤维素水解糖液的分析研究,其中基于现代仪器的分析方法为理论研究提供了更好的分析手段。本文作者根据文献调研总结了可服务于该新兴领域的分析方法,以期为研究者提供综合参考。  相似文献   
62.
63.
Specific enzymes have demonstrated an ability to increase the possibilities for extracting wood polymers. Enzymatic treatment requires an open wood structure, which was achieved by extended impregnation of the wood. However, lignin and some of the hemicelluloses, primarily glucomannan, were lost during the impregnation. To improve the carbohydrate yield, three glucomannan modification agents—sodium borohydride, polysulphide, and anthraquinone—were used, which increased the yields of the impregnated materials from 76.6% to 89.6%, 80.0%, and 81.3%, respectively. Through the use of additives, most of the glucomannan could be retained in the wood while still allowing the enzymes to penetrate the wood and attack the polymers. The additives also increased the extraction yield from 9 to 12% w/w wood. Gamanase treatment prior to the extraction increased the extraction yield to 14%. Of the three stabilizing agents, sodium borohydride was the most efficient, providing the highest extraction yields.  相似文献   
64.
65.
66.
Depletion of fossil fuels and increasing public awareness of environmental issues has stimulated the search for alternative energy sources. Biofuels are recognised as one of the most promising alternatives to fossil fuels, as they can be produced from various types of feedstock. The efficiency and sustainability of biomass-based production can be maximised by producing biofuels along with other valuable coproducts in a “biorefinery”. This concept was proposed to make the production of biofuels and biochemicals more economically viable by taking advantage of opportunities for process integration and waste recovery. In this work, a novel hybrid optimisation model that combines superstructure-based optimisation approach and insight-based automated targeting for the synthesis of a sustainable integrated biorefinery is presented. In addition, fuzzy optimisation is also adapted to synthesize such integrated facility with the simultaneous consideration of both economic and environmental performance. Note that the proposed approach is a generic synthesis strategy that can be applied even without detailed modelling of individual processes.  相似文献   
67.
随着生物柴油产业的发展,其主要副产物粗甘油的产量也逐年增加.大量粗甘油的产生不仅给环境造成了污染,也使精制甘油的市场价格大幅度下降.甘油是一种稳定的多功能化合物,可用作精细化工合成的基本原料.利用微生物转化甘油生产各种生物基化学品,因其具有绿色环保、可持续发展等特点,越来越受到人们的重视.本文简单介绍了甘油经微生物发酵...  相似文献   
68.
The updated Bioeconomy Strategy document “A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment”, which was issued by the European Commission in October 2018, encourages the exploitation of organic wastes according to a pyramidal hierarchy in which the extraction of valuable biomolecules, which will be used as they are or as precursors of high-added-value compounds, is a priority in biofuel production. This review considers a biorefinery platform in which food waste and sewage sludge are adopted to produce volatile fatty acids (VFAs) through a dark fermentation process. VFA fermentation is optimized by slightly acid pH (6–7), short hydraulic retention time (1–7 days) and high organic load rate (more than 10 gTS L−1 d−1). Attention has been focused on VFA exploitation for polyhydroxyalkanoate (PHA) production via a ‘feast and famine’ strategy performed in sequencing batch reactors. The obtained PHA yields are around 0.4–0.5 gPHA gCOD−1. Moreover, VFAs allow for the production of biofuels, such as hydrogen and methane, through single- or double-staged anaerobic digestion. Innovative bioelectrochemical upgrade strategies for biogas helps producers to obtain biomethane for the automotive sector. Moreover, biogas has recently been tested for the production of polyhydroxybutyrate, a biodegradable and biocompatible thermoplastic made by microorganisms from C1 carbon sources (CO2 and CH4). Digestates from anaerobic bioreactors are still rich in nitrogen and phosphorus compounds. These latter compounds have been identified as critical raw materials due to their low availability in the European Union and to increasing demand from the growing global population. Thus, nutrient recovery from digestate allows users to close the loop of the ‘circular economy’ approach. © 2019 Society of Chemical Industry  相似文献   
69.
Microalgae provide various potential advantages for biofuel production when compared with ‘traditional’ crops. Specifically, large-scale microalgal culture need not compete for arable land, while in theory their productivity is greater. In consequence, there has been resurgence in interest and a proliferation of algae fuel projects. However, while on a theoretical basis, microalgae may produce between 10- and 100-fold more oil per acre, such capacities have not been validated on a commercial scale. We critically review current designs of algal culture facilities, including photobioreactors and open ponds, with regards to photosynthetic productivity and associated biomass and oil production and include an analysis of alternative approaches using models, balancing space needs, productivity and biomass concentrations, together with nutrient requirements. In the light of the current interest in synthetic genomics and genetic modifications, we also evaluate the options for potential metabolic engineering of the lipid biosynthesis pathways of microalgae. We conclude that although significant literature exists on microalgal growth and biochemistry, significantly more work needs to be undertaken to understand and potentially manipulate algal lipid metabolism. Furthermore, with regards to chemical upgrading of algal lipids and biomass, we describe alternative fuel synthesis routes, and discuss and evaluate the application of catalysts traditionally used for plant oils. Simulations that incorporate financial elements, along with fluid dynamics and algae growth models, are likely to be increasingly useful for predicting reactor design efficiency and life cycle analysis to determine the viability of the various options for large-scale culture. The greatest potential for cost reduction and increased yields most probably lies within closed or hybrid closed–open production systems.  相似文献   
70.
The conversion of lignocellulose to value-added products is normally focused on fuel production; however, large-scale biorefineries require a cost-effective pretreatment process that can effectively fractionate the three main constituents of lignocellulose for the production of chemicals, fuels, and materials. In this study, a hemicellulosic biopolymer from poplar was fractionated by a mild organosolv process and the effects of various chemicals (sodium hydroxide, triethylamine, and formic acid) and alcohols on the fractionation efficiency and structural variation of hemicellulose were examined. Comparative studies indicated that an acidic catalyst decreased the purity of hemicelluloses by partial degradation of cellulose, and the core of the hemicellulosic biomacromolecule could be released and dissolved under alkaline conditions with 5.8%~19.0% yields. In addition, the use of alcohol with longer alkyl chains facilitated the release of the hemicellulosic biomacromolecule by partially cleaving the ether bonds in the lignin-carbohydrate complex (LCC); this is probably due to steric hindrance. The thermal degradation behavior showed that complete pyrolysis was easily achieved for the hemicellulosic polymer with minimal branches irrespective of its molecular weight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号