首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48927篇
  免费   5926篇
  国内免费   2497篇
电工技术   2555篇
技术理论   8篇
综合类   3198篇
化学工业   16178篇
金属工艺   3037篇
机械仪表   1674篇
建筑科学   3101篇
矿业工程   1209篇
能源动力   2980篇
轻工业   2579篇
水利工程   845篇
石油天然气   2727篇
武器工业   231篇
无线电   2461篇
一般工业技术   8748篇
冶金工业   3377篇
原子能技术   432篇
自动化技术   2010篇
  2024年   271篇
  2023年   1109篇
  2022年   1625篇
  2021年   1743篇
  2020年   1872篇
  2019年   1697篇
  2018年   1587篇
  2017年   1830篇
  2016年   2004篇
  2015年   1874篇
  2014年   2899篇
  2013年   2995篇
  2012年   3628篇
  2011年   4000篇
  2010年   2882篇
  2009年   2971篇
  2008年   2414篇
  2007年   2978篇
  2006年   2856篇
  2005年   2422篇
  2004年   2033篇
  2003年   1815篇
  2002年   1477篇
  2001年   1159篇
  2000年   998篇
  1999年   785篇
  1998年   651篇
  1997年   472篇
  1996年   433篇
  1995年   355篇
  1994年   325篇
  1993年   223篇
  1992年   188篇
  1991年   144篇
  1990年   136篇
  1989年   83篇
  1988年   64篇
  1987年   57篇
  1986年   40篇
  1985年   62篇
  1984年   52篇
  1983年   46篇
  1982年   31篇
  1981年   8篇
  1980年   15篇
  1977年   3篇
  1976年   4篇
  1963年   2篇
  1959年   5篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
The self‐assembly of amyloidogenic peptides into β‐sheet‐rich aggregates is a general feature of many neurodegenerative diseases, including Alzheimer's disease, which signifies the need for the effective attenuation of amyloid aggregation toward alleviating amyloid‐associated neurotoxicity. This study reports that photoluminescent carbon nanodots (CDs) can effectively suppress Alzheimer's β‐amyloid (Aβ) self‐assembly and function as a β‐sheet breaker disintegrating preformed Aβ aggregates. This study synthesizes CDs using ammonium citrate through one‐pot hydrothermal treatment and passivates their surface with branched polyethylenimine (bPEI). The bPEI‐coated CDs (bPEI@CDs) exhibit hydrophilic and cationic surface characteristics, which interact with the negatively charged residues of Aβ peptides, suppressing the aggregation of Aβ peptides. Under light illumination, bPEI@CDs display a more pronounced effect on Aβ aggregation and on the dissociation of β‐sheet‐rich assemblies through the generation of reactive oxygen species from photoactivated bPEI@CDs. The light‐triggered attenuation effect of Aβ aggregation using a series of experiments, including photochemical and microscopic analysis, is verified. Furthermore, the cell viability test confirms the ability of photoactivated bPEI@CDs for the suppression of Aβ‐mediated cytotoxicity, indicating bPEI@CDs' potency as an effective anti‐Aβ neurotoxin agent.  相似文献   
983.
A novel metallo–organic molecule, ferrocene, is selected as building block to construct Fe3O4 dots embedded in 3D honeycomb‐like carbon (Fe3O4 dots/3DHC) by using SiO2 nanospheres as template. Unlike previously used inorganic Fe3O4 sources, ferrocene simultaneously contains organic cyclopentadienyl groups and inorganic Fe atoms, which can be converted to carbon and Fe3O4, respectively. Atomic‐scale Fe distribution in started building block leads to the formation of ultrasmall Fe3O4 dots (≈3 nm). In addition, by well controlling the feed amount of ferrocene, Fe3O4 dots/3DHC with well‐defined honeycomb‐like meso/macropore structure and ultrathin carbon wall can be obtained. Owing to unique structural features, Fe3O4 dots/3DHC presents impressive lithium storage performance. The initial discharge and reversible capacities can reach 2047 and 1280 mAh g?1 at 0.05 A g?1. With increasing the current density to 1 and 3 A g?1, remarkable capacities of 963 and 731 mAh g?1 remain. Moreover, Fe3O4 dots/3DHC also has superior cycling stability, after a long‐term charge/discharge for 200 times, a high capacity of 1082 mAh g?1 can be maintained (80% against the capacity of the 2nd cycle).  相似文献   
984.
Flexible perovskite photodetectors are usually constructed on indium‐tin‐oxide‐coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high‐performance flexible perovskite photodetector is fabricated based on low‐cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro‐OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as‐fabricated photodetector shows a broad spectrum response from ultraviolet to near‐infrared light, high responsivity, fast response speed, long‐term stability, and self‐powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high‐performance photodetectors with low cost and self‐powered capability.  相似文献   
985.
Wang  Shuai  Cheng  Fei  Zhang  Peng  Li  Wen-Cui  Lu  An-Hui 《Nano Research》2017,10(6):2106-2116
Carbon nanosheets with a tunable mesopore size,large pore volume,and good electronic conductivity are synthesized via a solution-chemistry approach.In this synthesis,diaminohexane and graphene oxide (GO) are used as the structural directing agents,and a silica colloid is used as a mesopores template.Diaminohexane plays a crucial role in bridging silica colloid particles and GO,as well as initiating the polymerization of benzoxazine on the surfaces of both the GO and silica,resulting in the formation of a hybrid nanosheet polymer.The carbon nanosheets have graphene embedded in them and have several spherical mesopores with a pore volume up to 3.5 cm3·g-1 on their surfaces.These nuerous accessible mesopores in the carbon layers can act as reservoirs to host a high loading of active charge-storage materials with good dispersion and a uniform particle size.Compared with active materials with wide particle-size distributions,the unique proposed configuration with confined and uniform particles exhibits superior electrochemical performance during lithiation and delithiation,especially during long cycles and at high rates.  相似文献   
986.
Under water-rich conditions, small amphiphilic and hydrophobic drug molecules self-assemble into supramolecular nanostructures. Thus, substantial modifications in their interaction with cellular structures and the ability to reach intracellular targets could happen. Additionally, drug aggregates could be more toxic than the non-aggregated counterparts, or vice versa. Moreover, since self-aggregation reduces the number of effective “monomeric” molecules that interact with the target, the drug potency could be underestimated. In other cases, the activity could be ascribed to the non-aggregated molecule while it stems from its aggregates. Thus, drug self-assembly could mislead from drug throughput screening assays to advanced preclinical and clinical trials. Finally, aggregates could serve as crystallization nuclei. The impact that this phenomenon has on the biological performance of active compounds, the inconsistent and often controversial nature of the published data and the need for recommendations/guidelines as preamble of more harmonized research protocols to characterize drug self-aggregation were main motivations for this review. First, the key molecular and environmental parameters governing drug self-aggregation, the main drug families for which this phenomenon and the methods used for its characterization are described. Then, promising nanotechnology platforms investigated to prevent/control it towards a more efficient drug development process are briefly discussed.  相似文献   
987.
A solid-state drawing and winding process was done to create thin aligned carbon nanotube (CNT) sheets from CNT arrays. However, waviness and poor packing of CNTs in the sheets are two main weaknesses restricting their reinforcing efficiency in composites. This report proposes a simple press-drawing technique to reduce wavy CNTs and to enhance dense packing of CNTs in the sheets. Non-pressed and pressed CNT/epoxy composites were developed using prepreg processing with a vacuum-assisted system. Effects of pressing on the mechanical properties of the aligned CNT sheets and CNT/epoxy composites were examined. Pressing with distributed loads of 147, 221, and 294 N/m showed a substantial increase in the tensile strength and the elastic modulus of the aligned CNT sheets and their composites. The CNT sheets under a press load of 221 N/m exhibited the best mechanical properties found in this study. With a press load of 221 N/m, the pressed CNT sheet and its composite, respectively, enhanced the tensile strength by 139.1 and 141.9%, and the elastic modulus by 489 and 77.6% when compared with non-pressed ones. The pressed CNT/epoxy composites achieved high tensile strength (526.2 MPa) and elastic modulus (100.2 GPa). Results show that press-drawing is an important step to produce superior CNT sheets for development of high-performance CNT composites.  相似文献   
988.
Efficient capture of solar energy will be critical to meeting the energy needs of the future. Semiconductor photocatalysis is expected to make an important contribution in this regard, delivering both energy carriers (especially H2) and valuable chemical feedstocks under direct sunlight. Over the past few years, carbon dots (CDs) have emerged as a promising new class of metal‐free photocatalyst, displaying semiconductor‐like photoelectric properties and showing excellent performance in a wide variety of photoelectrochemical and photocatalytic applications owing to their ease of synthesis, unique structure, adjustable composition, ease of surface functionalization, outstanding electron‐transfer efficiency and tunable light‐harvesting range (from deep UV to the near‐infrared). Here, recent advances in the rational design of CDs‐based photocatalysts are highlighted and their applications in photocatalytic environmental remediation, water splitting into hydrogen, CO2 reduction, and organic synthesis are discussed.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号