首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5267篇
  免费   952篇
  国内免费   105篇
电工技术   27篇
综合类   249篇
化学工业   3028篇
金属工艺   33篇
机械仪表   25篇
建筑科学   86篇
矿业工程   26篇
能源动力   118篇
轻工业   1628篇
水利工程   14篇
石油天然气   85篇
武器工业   22篇
无线电   141篇
一般工业技术   777篇
冶金工业   28篇
原子能技术   26篇
自动化技术   11篇
  2024年   66篇
  2023年   168篇
  2022年   192篇
  2021年   294篇
  2020年   286篇
  2019年   264篇
  2018年   238篇
  2017年   284篇
  2016年   271篇
  2015年   276篇
  2014年   330篇
  2013年   402篇
  2012年   397篇
  2011年   368篇
  2010年   277篇
  2009年   261篇
  2008年   192篇
  2007年   260篇
  2006年   228篇
  2005年   194篇
  2004年   131篇
  2003年   117篇
  2002年   120篇
  2001年   115篇
  2000年   110篇
  1999年   88篇
  1998年   70篇
  1997年   51篇
  1996年   42篇
  1995年   33篇
  1994年   41篇
  1993年   43篇
  1992年   30篇
  1991年   11篇
  1990年   15篇
  1989年   6篇
  1988年   6篇
  1987年   10篇
  1986年   2篇
  1985年   11篇
  1984年   3篇
  1983年   5篇
  1982年   13篇
  1979年   1篇
  1951年   2篇
排序方式: 共有6324条查询结果,搜索用时 15 毫秒
61.
以离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)为溶剂、氯化锂(LiCl)为添加剂,通过测定纤维素溶液的流变性能来考察LiCl对纤维素/[AMIM]Cl溶液纺丝性能的影响,发现纤维素/[AMIM]Cl/LiCl呈现切力变稀行为,当LiCl添加量为[AMIM]Cl质量的3%时,切力变稀行为最明显.使用双螺杆挤出机通过干湿法纺丝制备出了高浓度的纤维素纤维,通过XRD、偏光显微镜、SEM及单纤强力仪等表征了纤维的结构与性能,结果表明随着LiCl含量的增加,所得纤维的结晶度和双折射率增加,结构致密,纤维强度增加,当LiCl含量达3%时,纤维强度可达3.13 cN/dtex.  相似文献   
62.
针对普通泡沫混凝土受环境变化及自身因素影响容易开裂的问题,通过加入可再分散乳胶粉,改善材料的抗裂性能.结果表明,可再分散乳胶粉、聚丙烯纤维、纤维素醚等外加剂的复掺,可以提高泡沫混凝土的柔韧性和抗冲击性能。  相似文献   
63.
纤维素选择性氧化制备二醛纤维素   总被引:2,自引:0,他引:2  
采用高碘酸钠选择性氧化纤维素制备二醛基纤维素。经单因素实验确定最佳反应时间的基础上采用正交实验,以氧化剂浓度、反应温度、pH值为因素,每个因素设计3个水平,采用滴定方法测定醛基含量,以醛基含量为指标,确定影响反应的主要影响因素及最佳工艺条件。得到的最佳工艺条件:反应温度为35℃,高碘酸钠与纤维素的摩尔比为2∶1,pH值为2。影响反应的因素顺序是温度、pH值和氧化剂浓度。采用红外光谱表征二醛基纤维素分子结构。  相似文献   
64.
Polyethylenimine-modified sugarcane bagasse cellulose (SBCMP), as a new adsorbent, was synthesized by the reaction of polyethylenimine (PEI) with sugarcane bagasse cellulose and glutaraldehyde. The adsorption of Cu(II) by SBCMP was pH-dependent, and the higher removal efficiency of Cu(II) appeared in the range of pH 3.0–6.0. The adsorption isothermal data fitted well with the Langmuir model, and the maximum adsorption capacity of SBCMP was up to 107.5 mg/g. The adsorption kinetics was best described by the pseudo-second-order kinetic. The adsorption of Cu(II) by SBCMP was unfavorable at high temperatures, and thermodynamic analyses implied that the adsorption of Cu(II) by SBCMP was an exothermic reaction. Fourier transform infrared spectroscopy (FT-IR) combined with X-ray photoelectron spectroscopy (XPS) revealed that Cu(II) adsorption on SBCMP mainly controlled by the nitrogen atoms of  NH group in PEI. The results of regeneration cycles showed that SBCMP was suitable for reuse in the adsorption of Cu(II) from aqueous solution. These experimental results suggested that SBCMP is expected to be a new biomass adsorbent with high efficiency in removing Cu(II) from wastewater.  相似文献   
65.
In this work, carboxymethyl cellulose (CMC) with low substitution degree, followed by different posttreatments, was applied to prepare treelike CMC nanofibrils (CMCNFs) and rodlike CMC nanocrystals (CMCNCs), and their performance in CMC composite film was evaluated simultaneously. From transmission electron microscopy results, it was found that the treelike CMCNCFs exhibited a lager aspect ratio compared to the rodlike CMCNCs. As for reinforcing CMC film, 4 wt% was the best adding amount, at this time, the tensile strength of CMC/CMCNFs and CMC/CMCNCs composite films was increased by 72.1% and 47.3%, respectively. Moreover, adding these nanofillers to CMC also could enhance the thermal stability of composite films slightly, while the transmittance of composite films was reduced at the same time. In addition, CMC/CMCNFs film was designed as a packaging box to determine its performance. Therefore, this study could reveal the differences of properties for composites with different types of nanocellulose and provide a foundation for further application of nanocellulose.  相似文献   
66.
Due to the low concentration of silver in water, most of the cellulose adsorbents exhibited low removal efficiency, which greatly limited their practical applications. Herein, a cellulose aerogel modified by thiosemicarbamide (CAT) was fabricated for reducing and adsorbing silver ions from low concentration wastewater. The characterization results concluded that CAT owned a three-dimensional spongy structure with many circular microspheres and a better specific surface area (19.37 m2 g−1), as well as the functional groups of ─C═N+─H and ─(C═S)─N. The static batch adsorption experiments demonstrated that CAT could reached the maximum removal percentage of 94.94% and adsorption capacity of 42.12 mg g−1 under the initial concentration of Ag(I) was 15 mg L−1 and the pH value was 7. Meanwhile, the adsorption of Ag(I) on CAT was second-order reaction, and the Langmuir model could better fit the adsorption process. In addition, CAT exhibited wide pH values (1–9) adaptability and excellent adsorption performance for silver through electrostatic interaction, chelation, and reduction. This study probably provides a new method as well as important experimental data and theoretical reference for the removal of silver ions and other metals.  相似文献   
67.
Processing of concentrated lignocellulosic biomass suspensions typically involves the conversion of the cellulose into sugars and sugars into ethanol. Biomass is usually pretreated via methods like comminution or steam explosion to form fine cellulosic fibers to be dispersed into an aqueous phase for further treatment. The resulting cellulose suspensions need to be pressurized and pumped into and out of various processing vessels without allowing the development of flow instabilities that are typically associated with “demixing”, that is, the segregation of the cellulosic biomass from the aqueous phase via the formation of mats of cellulosic fibers and the filtration of the aqueous phase. Such demixing can prevent continuous processing at high rates. Here, the development of flow instabilities via the demixing effect for cellulose suspensions is demonstrated using capillary and compressive squeeze flows. It is shown that the use of a gelation agent, hydroxypropyl guar gum, at the critical concentration of 0.5 wt% or higher significantly affects the viscoelastic material functions of cellulosic suspensions, improves the dispersive mixing of the fibers within the aqueous phase, and results in the elimination of the flow instabilities and associated demixing effects that are ubiquitously observed during the pressurization and processing of cellulosic suspensions.  相似文献   
68.
Aqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid-scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose-carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn2+ conductivity (26 mS cm−1), which is attributed to the material's strong mechanical strength (≈70 MPa) and water-bonding ability. With this electrolyte, the Zn-metal anode shows exceptional cycling stability at an ultra-high rate, with the ability to sustain a current density as high as 80 mA cm−2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm−2 (40 mA cm−2). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water-bonding capacity of the CMC. Full Zn||MnO2 batteries fabricated with this electrolyte demonstrate excellent high-rate performance and long-term cycling stability (>500 cycles at 8C). These results suggest the cellulose-CMC electrolyte as a promising low-cost, easy-to-fabricate, and sustainable aqueous-based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid-scale energy storage for renewable energy sources.  相似文献   
69.
Context: The conventional liquid ophthalmic delivery systems exhibit short pre-corneal residence time and the relative impermeability to the cornea which leads to poor ocular bioavailability.

Objective: The aim of this study was to apply quality by design (QbD) for development of dexamethasone sodium phosphate (DSP) and tobramycin sulfate (TS)-loaded thermoresponsive ophthalmic in situ gel containing Poloxamer 407 and hydroxyl propyl methyl cellulose (HPMC) K4M for prolonging the pre-corneal residence time, ocular bioavability and decreases the frequency of administration of dosage form. The material attributes and the critical quality attributes (CQA) of the in situ gel were identified. Central composite design (CCD) was adopted to optimize the formulation.

Materials and methods: The ophthalmic in situ forming gels were prepared by cold method. Materials attributes were the amount of Poloxamer 407 and HPMC and CQA identified were Gel strength, mucoadhesive index, gelation temperature and % of drug release of both drug.

Results and discussion: Optimized batch (F*) containing 16.75% poloxamer 407 and 0.54% HPMC K4M were exhibited all results in acceptable limits. Compared with the marketed formulation, optimized in situ gel showed delayed Tmax, improved Cmax and AUC in rabbit aqueous humor, suggesting the sustained drug release and better corneal penetration and absorption.

Conclusion: According to the study, it could be concluded that DSP and TS would be successfully formulated as in situ gelling mucoadhesive system for the treatment of steroid responsive eye infections with the properties of sustained drug release, prolonged ocular retention and improved corneal penetration.  相似文献   

70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号