首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57315篇
  免费   6627篇
  国内免费   3240篇
电工技术   2411篇
技术理论   1篇
综合类   4977篇
化学工业   14271篇
金属工艺   5814篇
机械仪表   2464篇
建筑科学   9191篇
矿业工程   1353篇
能源动力   1250篇
轻工业   2088篇
水利工程   895篇
石油天然气   2168篇
武器工业   707篇
无线电   2491篇
一般工业技术   10865篇
冶金工业   1749篇
原子能技术   179篇
自动化技术   4308篇
  2024年   267篇
  2023年   781篇
  2022年   1414篇
  2021年   1766篇
  2020年   1853篇
  2019年   1768篇
  2018年   1711篇
  2017年   2305篇
  2016年   2390篇
  2015年   2401篇
  2014年   3197篇
  2013年   3045篇
  2012年   3885篇
  2011年   4036篇
  2010年   3196篇
  2009年   3350篇
  2008年   2794篇
  2007年   3969篇
  2006年   3626篇
  2005年   3114篇
  2004年   2527篇
  2003年   2372篇
  2002年   2103篇
  2001年   1950篇
  2000年   1602篇
  1999年   1267篇
  1998年   977篇
  1997年   816篇
  1996年   645篇
  1995年   497篇
  1994年   420篇
  1993年   349篇
  1992年   228篇
  1991年   166篇
  1990年   121篇
  1989年   75篇
  1988年   64篇
  1987年   35篇
  1986年   8篇
  1985年   16篇
  1984年   15篇
  1983年   5篇
  1982年   12篇
  1981年   2篇
  1980年   16篇
  1979年   11篇
  1975年   3篇
  1957年   1篇
  1956年   1篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
21.
Colour remains one of the key factors in presenting an object and, consequently, has been widely applied in retrieval of images based on their visual contents. However, a colour appearance changes with the change of viewing surroundings, the phenomenon that has not been paid attention yet while performing colour‐based image retrieval. To comprehend this effect, in this article, a chromatic contrast model, CAMcc, is developed for the application of retrieval of colour intensive images, cementing the gap that most of existing colour models lack to fill by taking simultaneous colour contrast into account. Subsequently, the model is applied to the retrieval task on a collection of museum wallpapers of colour‐rich images. In comparison with current popular colour models including CIECAM02, HSI and RGB, with respect to both foreground and background colours, CAMcc appears to outperform the others with retrieved results being closer to query images. In addition, CAMcc focuses more on foreground colours, especially by maintaining the balance between both foreground and background colours, while the rest of existing models take on dominant colours that are perceived the most, usually background tones. Significantly, the contribution of the investigation lies in not only the improvement of the accuracy of colour‐based image retrieval but also the development of colour contrast model that warrants an important place in colour and computer vision theory, leading to deciphering the insight of this age‐old topic of chromatic contrast in colour science. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 361–373, 2015  相似文献   
22.
This paper introduces a simultaneous process optimization and heat integration approach, which can be used directly with the rigorous models in process simulators. In this approach, the overall process is optimized utilizing external derivative-free optimizers, which interact directly with the process simulation. The heat integration subproblem is formulated as an LP model and solved simultaneously during optimization of the flowsheet to update the minimum utility and heat exchanger area targets. A piecewise linear approximation for the composite curve is applied to obtain more accurate heat integration results. This paper describes the application of this simultaneous approach for three cases: a recycle process, a separation process and a power plant with carbon capture. Case study results indicate that this simultaneous approach is relatively easy to implement and achieves higher profit and lower operating cost and, in the case of the power plant example, higher net efficiency than the sequential approach.  相似文献   
23.
24.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
25.
《Ceramics International》2020,46(4):4335-4343
This study aims at assessing the influence of nanosilica on the bioactivity and mechanical properties of calcium aluminate cement. For this purpose, nanosilica was applied as a replacement for calcium aluminate cement at 0, 2, 5 and 8 wt%. The main components were analyzed by scanning electron microscope coupled with surface imaging and elemental analysis, fourier transform infrared spectroscopy and X-ray diffraction analysis. To estimate the bioactivity of specimens, hydroxyapatite formation on the surface of cement paste was investigated in the simulated body fluid solution. In addition, in vivo evaluation of calcium aluminate cement was performed in subcutaneous tissue of rats. To investigate the mechanical properties, both compressive and flexural strengths were also measured. The results revealed that by increasing nanosilica up to 8 wt%, the strength enhanced. Moreover all cement paste samples with various amounts of nanosilica represented good bioactivity because of formation of bonelike apatite layer on the surface of specimens within 28 days after soaking in simulated body fluid. In vivo experiments indicated that the cement sample was absorbed by the tissue and there was no infection at the implant site. Based on the in vitro and in vivo results, the specimen with 2 wt% nanosilica represented the highest bioactivity.  相似文献   
26.
ABSTRACT

A mathematical model has been developed by coupling genetic algorithm (GA) with heat and material balance equations to estimate rate parameters and solid-phase evolution related to the reduction of iron ore-coal composite pellets in a multi-layer bed Rotary hearth Furnace (RHF). The present process involves treating iron ore-coal composite pellets in a crucible over the hearth in RHF. The various solid phases evolved at the end of the process are estimated experimentally, and are used in conjunction with the model to estimate rate parameters. The predicted apparent activation energy for the wustite reduction step is found to be lower than those of the reduction of higher oxides. The thermal efficiency is found to decrease significantly with an increase in the carbon content of the pellet. Thermal efficiency was also found to increase mildly up to three layers. Multilayer bed remains as a potential design parameter to increase thermal efficiency.  相似文献   
27.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
28.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
29.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
30.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号