首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   59篇
  国内免费   36篇
综合类   2篇
化学工业   148篇
金属工艺   32篇
机械仪表   5篇
建筑科学   17篇
轻工业   9篇
无线电   57篇
一般工业技术   71篇
冶金工业   28篇
原子能技术   1篇
自动化技术   7篇
  2024年   1篇
  2023年   14篇
  2022年   27篇
  2021年   71篇
  2020年   31篇
  2019年   25篇
  2018年   27篇
  2017年   18篇
  2016年   16篇
  2015年   19篇
  2014年   21篇
  2013年   19篇
  2012年   6篇
  2011年   34篇
  2010年   9篇
  2009年   3篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1988年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有377条查询结果,搜索用时 156 毫秒
281.
The importance of mitochondria in tumorigenesis makes these organelles an ideal target for cancer therapy. In recent years, luminogens with the aggregation-induced emission (AIE) effect have been developed for mitochondrial targeting and cancer treatment. The induction of mitochondrial dysfunction can be an effective pathway of chemotherapy, photodynamic therapy, and combination therapy against cancer. This review focuses on recent progress in the field of AIE luminogens (AIEgens) for cancer theranostics based on mitochondrial targeting and dysfunction. AIEgens for cancer treatment, including chemotherapy, photodynamic therapy, and combination therapy, are summarized herein. Molecular design efforts toward mitochondrial targeting and mitochondria-damaging mechanisms are also discussed. Finally, we discuss the challenges and future directions of development for AIEgens in mitochondria-targeted cancer treatment.  相似文献   
282.
Selenium has been extensively evaluated clinically as a chemopreventive agent with variable results depending on the type and dose of selenium used. Selenium species are now being therapeutically evaluated as modulators of drug responses rather than as directly cytotoxic agents. In addition, recent data suggest an association between selenium base-line levels in blood and survival of patients with COVID-19. The major focus of this mini review was to summarize: the pathways of selenium metabolism; the results of selenium-based chemopreventive clinical trials; the potential for using selenium metabolites as therapeutic modulators of drug responses in cancer (clear-cell renal-cell carcinoma (ccRCC) in particular); and selenium usage alone or in combination with vaccines in the treatment of patients with COVID-19. Critical therapeutic targets and the potential role of different selenium species, doses, and schedules are discussed.  相似文献   
283.
Advances in the early diagnosis and treatment have led to increases in breast cancer survivorship. Survivors report cognitive impairment symptoms such as loss of concentration and learning and memory deficits which significantly reduce the patient’s quality of life. Additional therapies are needed to prevent these side effects and, the precise mechanisms of action responsible are not fully elucidated. However, increasing evidence points toward the use of neuroprotective compounds with antioxidants and anti-inflammatory properties as tools for conserving learning and memory. Here, we examine the ability of piperlongumine (PL), an alkaloid known to have anti-inflammatory and antioxidant effects, to play a neuroprotective role in 16-week-old female C57BL/6J mice treated with a common breast cancer regimen of doxorubicin, cyclophosphamide, and docetaxel (TAC). During social memory testing, TAC-treated mice exhibited impairment, while TAC/PL co-treated mice did not exhibit measurable social memory deficits. Proteomics analysis showed ERK1/2 signaling is involved in TAC and TAC/PL co-treatment. Reduced Nrf2 mRNA expression was also observed. mRNA levels of Gria2 were increased in TAC treated mice and reduced in TAC/PL co-treated mice. In this study, PL protects against social memory impairment when co-administered with TAC via multifactorial mechanisms involving oxidative stress and synaptic plasticity.  相似文献   
284.
The possibility for an ecologically friendly and simple production of gold nanoparticles (AuNPs) with Chaga mushroom (Inonotus obliquus) (Ch-AuNPs) is presented in this study. Chaga extract’s reducing potential was evaluated at varied concentrations and temperatures. The nanoparticles synthesized were all under 20 nm in size, as measured by TEM, which is a commendable result for a spontaneous synthesis method utilizing a biological source. The Ch-AuNPs showed anti-cancer chemotherapeutic effects on human brain cancer cells which is attributed to the biofunctionalization of the AuNPs with Chaga bioactive components during the synthesis process. Further, the photothermal ablation capability of the as-prepared gold nanoparticles on human brain cancer cells was investigated. It was found that the NIR-laser induced thermal ablation of cancer cells was effective in eliminating over 80% of the cells. This research projects the Ch-AuNPs as promising, dual modal (chemo-photothermal) therapeutic candidates for anti-cancer applications.  相似文献   
285.
Melanoma is a drug-resistant cancer, representing a serious challenge in cancer treatment. Dacarbazine (DTIC) is the standard drug in metastatic melanoma treatment, despite the poor results. Hyperthermia has been proven to potentiate chemotherapy. Hence, this work analyzed the combined action of hyperthermia and DTIC on A375 and MNT-1 cell lines. First, temperatures between 40 °C and 45 °C were tested. The effect of DTIC on cell viability was also investigated after exposures of 24, 48, and 72 h. Then, cells were exposed to 43 °C and to the respective DTIC IC10 or IC20 of each time exposure. Overall, hyperthermia reduced cell viability, however, 45 °C caused an excessive cell death (>90%). Combinational treatment revealed that hyperthermia potentiates DTIC’s effect, but it is dependent on the concentration and temperature used. Also, it has different mechanisms from the treatments alone, delaying A375 cells at the G2/M phase and MNT-1 cells at the S and G2/M phases. Intracellular reactive oxygen species (ROS) levels increased after treatment with hyperthermia, but the combined treatment showed no additional differences. Also, hyperthermia highly increased the number of A375 early apoptotic cells. These results suggest that combining hyperthermia and DTIC should be more explored to improve melanoma treatment.  相似文献   
286.
赵全铭  杨洋 《金属学报》2020,25(4):475-480
三阴性乳腺癌为雌、孕激素受体及人表皮生长因子受体-2均为阴性的乳腺癌,由于缺乏特异性的治疗靶点,晚期治疗尚缺少有效的治疗方案。本文综述近年来晚期三阴性乳腺癌的药物治疗研究进展,主要包括化学治疗、靶向治疗、内分泌治疗、免疫治疗四个方面,旨在为临床治疗提供借鉴和参考。  相似文献   
287.
Breast cancer is the most common one in women worldwide and doxorubicin(Dox)is one of the most commonly used and effective drugs for breast cancer treatment.Unfortunately,Dox-based chemotherapy faces irreversible cardiotoxicity and unsatisfactory therapy efficiency.It is desirable to devise Dox nanoformulations with less adverse effects and greater therapeutic efficacy for this cancer treatment.In this work,a multifunctional calcium phosphate nanoformulation(ICG-Dox/DNA@CaP)was developed by co-loading Dox/DNA complexes and indocyanine green(ICG)molecules for photothermal therapy(PTT)-enhanced chemotherapy.In this nanocomposite,using DNA as Dox carrier facilitated Dox loading into the CaP matrix,and significantly reduced Dox leakage as well as cytotoxicity in comparison with that of free Dox in physiological medium(pH 7.4).In specific,ICG-Dox/DNA@CaP only released Dox in a weakly acidic nuclease-containing environment,such as tumor microenvironment and endosome/lysosome.Moreover,Dox/DNA complexes exhibited synergistic interactions with ICG-based photothermal effect on tumor cell apoptosis in this ICG-Dox/DNA@CaP nanocomposite.This work has demonstrated a new strategy to combine FDA-approved therapeutics(Dox and ICG)in CaP-based nanomaterials for reduced cytotoxicity and enhanced therapeutic effect,and provided a new way to engineer CaP carriers as multifunctional delivery systems for clinical anti-cancer therapy.  相似文献   
288.
A novel solution approach is developed for the scheduling of chemotherapy sessions at cancer treatment centers. The problem is divided into two subproblems determining the day (interday scheduling) and the time slots (intraday scheduling), respectively. The interday subproblem is solved by a model that allows for effective treatment center capacity choices while the intraday subproblem is addressed using two optimization models. New patient arrivals and treatment protocols specifying the latest starting date and session spacing are sources of uncertainty. Unlike other existing approaches, the proposed method incorporates the concept of effective treatment capacity which facilitates the interaction between the interday and intraday subproblems allowing them to be solved sequentially and iteratively to thus achieve much more resource-efficient solutions. A case study using real data from a Chilean cancer center to conduct comparative simulations of its manual scheduling methods and the proposed methodology found that the latter almost always performed better, often significantly so, on makespan, resource utilization, overtime, and patient diversion metrics.  相似文献   
289.
Rev1 is a protein scaffold of the translesion synthesis (TLS) pathway, which employs low-fidelity DNA polymerases for replication of damaged DNA. The TLS pathway helps cancers tolerate DNA damage induced by genotoxic chemotherapy, and increases mutagenesis in tumors, thus accelerating the onset of chemoresistance. TLS inhibitors have emerged as potential adjuvant drugs to enhance the efficacy of first-line chemotherapy, with the majority of reported inhibitors targeting protein-protein interactions (PPIs) of the Rev1 C-terminal domain (Rev1-CT). We previously identified phenazopyridine (PAP) as a scaffold to disrupt Rev1-CT PPIs with Rev1-interacting regions (RIRs) of TLS polymerases. To explore the structure-activity relationships for this scaffold, we developed a protocol for co-crystallization of compounds that target the RIR binding site on Rev1-CT with a triple Rev1-CT/Rev7R124A/Rev3-RBM1 complex, and solved an X-ray crystal structure of Rev1-CT bound to the most potent PAP analogue. The structure revealed an unexpected binding pose of the compound and informed changes to the scaffold to improve its affinity for Rev1-CT. We synthesized eight additional PAP derivatives, with modifications to the scaffold driven by the structure, and evaluated their binding to Rev1-CT by microscale thermophoresis (MST). Several second-generation PAP derivatives showed an affinity for Rev1-CT that was improved by over an order of magnitude, thereby validating the structure-based assumptions that went into the compound design.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号