首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115492篇
  免费   27238篇
  国内免费   4349篇
电工技术   8096篇
技术理论   3篇
综合类   6066篇
化学工业   31391篇
金属工艺   4282篇
机械仪表   6316篇
建筑科学   6732篇
矿业工程   1937篇
能源动力   6857篇
轻工业   9106篇
水利工程   5663篇
石油天然气   4400篇
武器工业   680篇
无线电   11513篇
一般工业技术   21755篇
冶金工业   6562篇
原子能技术   1433篇
自动化技术   14287篇
  2024年   249篇
  2023年   868篇
  2022年   1696篇
  2021年   2318篇
  2020年   4816篇
  2019年   7103篇
  2018年   6469篇
  2017年   7435篇
  2016年   7605篇
  2015年   7484篇
  2014年   8518篇
  2013年   9344篇
  2012年   8688篇
  2011年   8963篇
  2010年   6853篇
  2009年   6658篇
  2008年   6253篇
  2007年   6820篇
  2006年   6374篇
  2005年   5388篇
  2004年   4664篇
  2003年   4281篇
  2002年   3778篇
  2001年   3269篇
  2000年   2885篇
  1999年   2057篇
  1998年   1099篇
  1997年   935篇
  1996年   821篇
  1995年   721篇
  1994年   599篇
  1993年   459篇
  1992年   390篇
  1991年   251篇
  1990年   244篇
  1989年   188篇
  1988年   124篇
  1987年   92篇
  1986年   71篇
  1985年   40篇
  1984年   47篇
  1983年   35篇
  1982年   23篇
  1981年   11篇
  1980年   10篇
  1979年   15篇
  1977年   4篇
  1975年   4篇
  1959年   21篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
41.
Although rainfall input uncertainties are widely identified as being a key factor in hydrological models, the rainfall uncertainty is typically not included in the parameter identification and model output uncertainty analysis of complex distributed models such as SWAT and in maritime climate zones. This paper presents a methodology to assess the uncertainty of semi-distributed hydrological models by including, in addition to a list of model parameters, additional unknown factors in the calibration algorithm to account for the rainfall uncertainty (using multiplication factors for each separately identified rainfall event) and for the heteroscedastic nature of the errors of the stream flow. We used the Differential Evolution Adaptive Metropolis algorithm (DREAM(zs)) to infer the parameter posterior distributions and the output uncertainties of a SWAT model of the River Senne (Belgium). Explicitly considering heteroscedasticity and rainfall uncertainty leads to more realistic parameter values, better representation of water balance components and prediction uncertainty intervals.  相似文献   
42.
Coupled large eddy simulation and the discrete element method are applied to study turbulent particle–laden flows, including particle dispersion and agglomeration, in a channel. The particle–particle interaction model is based on the Hertz–Mindlin approach with Johnson–Kendall–Roberts cohesion to allow the simulation of van der Waals forces in a dry air flow. The influence of different particle surface energies, and the impact of fluid turbulence, on agglomeration behaviour are investigated. The agglomeration rate is found to be strongly influenced by the particle surface energy, with a positive relationship observed between the two. Particle agglomeration is found to be enhanced in two separate regions within the channel. First, in the near-wall region due to the high particle concentration there driven by turbophoresis, and secondly in the buffer region where the high turbulence intensity enhances particle–particle interactions.  相似文献   
43.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
44.
Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs: an AGE receptor‐dependent way to stimulate cell signals, and an AGE receptor‐independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health‐hazardous dAGEs. To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised: molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat‐processed foods.  相似文献   
45.
不同折流板结构螺旋折流板换热器传热性能的比较(英文)   总被引:1,自引:0,他引:1  
Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers, the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as wel as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20° (20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overal heat transfer coefficient K, shel-side heat transfer coefficient ho and shel-side average comprehensive index ho/Δpo.  相似文献   
46.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
47.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
48.
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”.  相似文献   
49.
This paper addresses a tracking problem for uncertain nonlinear discrete‐time systems in which the uncertainties, including parametric uncertainty and external disturbance, are periodic with known periodicity. Repetitive learning control (RLC) is an effective tool to deal with periodic unknown components. By using the backstepping procedures, an adaptive RLC law with periodic parameter estimation is designed. The overparameterization problem is overcome by postponing the parameter estimation to the last backstepping step, which could not be easily solved in robust adaptive control. It is shown that the proposed adaptive RLC law without overparameterization can guarantee the perfect tracking and boundedness of the states of the whole closed‐loop systems in presence of periodic uncertainties. In addition, the effectiveness of the developed controller is demonstrated by an implementation example on a single‐link flexible‐joint robot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
50.
A steelmaking-continuous casting (SCC) scheduling problem is an example of complex hybrid flow shop scheduling problem (HFSSP) with a strong industrial background. This paper investigates the SCC scheduling problem that involves controllable processing times (CPT) with multiple objectives concerning the total waiting time, earliness/tardiness and adjusting cost. The SCC scheduling problem with CPT is seldom discussed in the existing literature. This study is motivated by the practical situation of a large integrated steel company in which the just-in-time (JIT) and cost-cutting production strategy have become a significant concern. To address this complex HFSSP, the scheduling problem is decomposed into two subproblems: a parallel machine scheduling problem (PMSP) in the last stage and an HFSSP in the upstream stages. First, a hybrid differential evolution (HDE) algorithm combined with a variable neighborhood decomposition search (VNDS) is proposed for the former subproblem. Second, an iterative backward list scheduling (IBLS) algorithm is presented to solve the latter subproblem. The effectiveness of this bi-layer optimization approach is verified by computational experiments on well-designed and real-world scheduling instances. This study provides a new perspective on modeling and solving practical SCC scheduling problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号