首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2389篇
  免费   149篇
  国内免费   54篇
电工技术   8篇
综合类   107篇
化学工业   1430篇
金属工艺   62篇
机械仪表   32篇
建筑科学   32篇
矿业工程   10篇
能源动力   29篇
轻工业   171篇
水利工程   2篇
石油天然气   36篇
武器工业   7篇
无线电   180篇
一般工业技术   253篇
冶金工业   141篇
原子能技术   35篇
自动化技术   57篇
  2024年   6篇
  2023年   34篇
  2022年   80篇
  2021年   93篇
  2020年   56篇
  2019年   51篇
  2018年   36篇
  2017年   61篇
  2016年   89篇
  2015年   63篇
  2014年   86篇
  2013年   144篇
  2012年   119篇
  2011年   138篇
  2010年   107篇
  2009年   136篇
  2008年   129篇
  2007年   138篇
  2006年   142篇
  2005年   117篇
  2004年   114篇
  2003年   119篇
  2002年   103篇
  2001年   57篇
  2000年   66篇
  1999年   45篇
  1998年   54篇
  1997年   31篇
  1996年   30篇
  1995年   18篇
  1994年   18篇
  1993年   31篇
  1992年   17篇
  1991年   16篇
  1990年   5篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1963年   1篇
排序方式: 共有2592条查询结果,搜索用时 15 毫秒
31.
Cationic and neutral mononuclear Cu(I) complexes, [Cu(PPh3)2(PmH)]BF4 (1a), [Cu(DPEphos) (PmH)]BF4 (2a), [Cu(Xantphos) (PmH)]BF4 (3a), [Cu(PPh3)2(Pm)] (1b), [Cu(DPEphos) (Pm)] (2b) and [Cu(Xantphos) (Pm)] (3b) (PPh3 = triphenylphosphine, DPEphos = bis(2-diphenylphosphinophenyl)ether, Xantphos = 9, 9-dimethyl-bis(diphenylphosphino)xanthenes, PmH = 2-(pyridin-2-yl)benzimidazole, Pm=(2-(Pyridin-2-yl)benzimidazolate), have been prepared and characterized by IR, 1H NMR, 13C NMR, 31P NMR, XRD, elemental analysis and X-ray crystal structure analysis. The structural analysis shows that each of Cu(I) complexes includes a tetrahedral [Cu(NN) (PP)]+ moiety, and temperature variation from 99 K to 298 K leads to the change of bonds lengths, angles and weak interactions. Meanwhile, theoretical calculations indicate that the differences between cationic and neutral Cu(I) complexes affect the composition of HOMO and LUMO orbitals, and the effect of temperature on Mülliken atomic charges is limited. Furthermore, neutral Cu(I) complexes 1b–3b show better luminescence in comparison to cationic Cu(I) complexes 1a-3a at room temperature, and temperature variations from 99 K to 298 K result in changing photoluminescence to some extent, which partly agrees with the related calculation results. In these cationic and neutral Cu(I) complexes, the maximum phosphorescent lifetime and quantum yield reach respectively 137 μs and 42% at room temperature. Moreover, cationic and neutral Cu(I) complexes are utilized to fabricate the monochromatic LEDs, showing favorable electroluminescence with the maximum EQE of 7.10%.  相似文献   
32.
Near‐infrared‐emitting electroluminescent (EL) devices using blue‐light‐emitting polymers blended with the Yb complexes Yb(DBM)3phen (DBM = dibenzoylmethane), Yb(DNM)3phen (DNM = dinaphthoylmethane), and Yb(TPP)L(OEt) (L(OEt) = [(C5H5)Co{P(O)Et2}3]) have been studied. EL devices composed of Yb(DNM)3phen blended with PPP‐OR11 showed enhanced near‐IR output at 977 nm when compared to those fabricated with Yb(DBM)3phen/PPP‐OR11 blends. The maximum near‐IR external efficiencies of the devices with Yb(DBM)3phen and Yb(DNM)3phen are, respectively, 7 × 10–5 (at 6 V and at 0.81 mA mm–2) and 4 × 10–4 (at 7 V, and 0.74 mA mm–2). The optimal blend composition for EL device performance consisted of PPP‐OR11 blended with 10–20 mol‐% Yb(DNM)3phen. A device fabricated using Yb‐(TPP)L(OEt)/PPP‐OR11 showed significantly enhanced near‐IR output efficiency, and future efforts will focus on devices fabricated using porphyrin‐based materials.  相似文献   
33.
34.
研究了镀镍液中微量铁的测定方法。采用5-溴水扬基荧光酮(5-BSAF)为显色剂。在pH5.0~6.0介质中,Fe(Ⅲ)与5-BSAF,CTMAB形成稳定的三元配合物。其最适测定波长在605nm。摩尔吸光系数ε_(605)=1.4×105,有色溶液2h内稳定不变,线性范围为0~7μg/25ml,线性相关系数γ=0.9997,加入回收率在97.7%~103%之间。高含量的各种镀液成分以及20余种物质不干扰测定。  相似文献   
35.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   
36.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   
37.
掺铕稀土配合物的光学树脂荧光光谱研究   总被引:2,自引:0,他引:2  
报道了将多种稀土铕配合物复合于苯乙烯(ST)/甲基丙烯酸(HMA)的共聚体系,研究了含稀土配合物透明光学树脂的光学性能。发现其具有发光效率高,光谱呈现尖锐的线状谱带及相对于纯稀土配合物粉末来说掺有稀土配合物的光学树脂的发射产生光谱红移等特点。特别是用电子云重排效应(当中心稀土离子与不同配体结合时,其相同的J能级间的跃迁谱带位置略有移动的现象)解释了掺有稀土配合物的光学树脂发射光谱红移现象。并推断出在含稀土配合物复合于光学树脂后。稀土中心离子和配位原子间距离有所减小。  相似文献   
38.
39.
研究了p型含氮以及不含氮直拉(CZ)硅中热施主(TD)以及氮氧(N-O)复合体的电学性质.硅片在350~850℃范围进行不同时间的退火后,利用四探针和通过室温傅里叶红外光谱(FTIR)分别测量其载流子浓度和间隙氧浓度的变化.实验结果表明:p型含氮直拉硅(NCZ)中热施主的电学特性基本与n型NCZ硅相同,但N-O复合体的消除温度明显低于n型NCZ硅,这是由于p型NCZ硅中硼促进了N-O复合体的消除.  相似文献   
40.
Highly efficient orange and green emission from single‐layered solid‐state light‐emitting electrochemical cells based on cationic transition‐metal complexes [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 (where ppy is 2‐phenylpyridine, dFppy is 2‐(2,4‐difluorophenyl)pyridine, and sb is 4,5‐diaza‐9,9′‐spirobifluorene) is reported. Photoluminescence measurements show highly retained quantum yields for [Ir(ppy)2sb]PF6 and [Ir(dFppy)2 sb]PF6 in neat films (compared with quantum yields of these complexes dispersed in m‐bis(N‐carbazolyl)benzene films). The spiroconfigured sb ligands effectively enhance the steric hindrance of the complexes and reduce the self‐quenching effect. The devices that use single‐layered neat films of [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 achieve high peak external quantum efficiencies and power efficiencies of 7.1 % and 22.6 lm W–1) at 2.5 V, and 7.1 % and 26.2 lm W–1 at 2.8 V, respectively. These efficiencies are among the highest reported for solid‐state light‐emitting electrochemical cells, and indicate that cationic transition‐metal complexes containing ligands with good steric hindrance are excellent candidates for highly efficient solid‐state electrochemical cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号