Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.
This study is focused on the identification of structural features that determine the selectivity of dopamine receptor agonists toward D1 and D2 receptors. Selective pharmacophore models were developed for both receptors. The models were built by using projected pharmacophoric features that represent the main agonist interaction sites in the receptor (the Ser residues in TM5 and the Asp in TM3), a directional aromatic feature in the ligand, a feature with large positional tolerance representing the positively charged nitrogen in the ligand, and sets of excluded volumes reflecting the shapes of the receptors. The sets of D1 and D2 ligands used for modeling were carefully selected from published sources and consist of structurally diverse, conformationally rigid full agonists as active ligands together with structurally related inactives. The robustness of the models in discriminating actives from inactives was tested against four ensembles of conformations generated by using different established methods and different force fields. The reasons for the selectivity can be attributed to both geometrical differences in the arrangement of the features, e.g., different tilt angels of the π system, as well as shape differences covered by the different sets of excluded volumes. This work provides useful information for the design of new D1 and D2 agonists and also for comparative homology modeling of D1 and D2 receptors. The approach is general and could therefore be applied to other ligand–protein interactions for which no experimental protein structure is available.相似文献