首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   296篇
  国内免费   7篇
电工技术   1篇
综合类   6篇
化学工业   913篇
金属工艺   2篇
机械仪表   9篇
能源动力   4篇
轻工业   2篇
石油天然气   3篇
武器工业   6篇
无线电   81篇
一般工业技术   169篇
原子能技术   1篇
自动化技术   1篇
  2024年   3篇
  2023年   40篇
  2022年   1篇
  2021年   80篇
  2020年   62篇
  2019年   30篇
  2018年   61篇
  2017年   54篇
  2016年   77篇
  2015年   73篇
  2014年   102篇
  2013年   65篇
  2012年   36篇
  2011年   38篇
  2010年   38篇
  2009年   48篇
  2008年   48篇
  2007年   46篇
  2006年   42篇
  2005年   36篇
  2004年   43篇
  2003年   45篇
  2002年   28篇
  2001年   16篇
  2000年   18篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   6篇
  1984年   4篇
  1982年   2篇
排序方式: 共有1198条查询结果,搜索用时 15 毫秒
51.
Model palm olein natural oil polyols (NOPs) with varying ratios of primary to secondary hydroxyls were synthesized, characterized, and evaluated in reaction kinetics study with isocyanate in formation of polyurethanes. Reaction rate constants and activation energies associated with primary and secondary hydroxyls of NOPs were quantified. The kinetic study in toluene shows that the NOP containing primary hydroxyls have three times higher reaction rate constants in noncatalyzed reaction with 4,4′‐diphenylmethane diisocyanate (4,4′‐MDI) compared to the model NOP containing only secondary hydroxyls, which is associated with higher activation energy of secondary hydroxyls. However, the difference in reaction rate constants of primary and secondary hydroxyls in NOPs diminished in the reactions catalyzed with dibutyltin dilaurate. Bulk polymerization reaction confirms the kinetics results in toluene, showing that the model NOP containing primary hydroxyls reached gel time at a faster rate. Evaluation of elastomers from bulk polymerization shows low degree of phase separation of hard and soft segments for elastomers based on the model NOPs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42955.  相似文献   
52.
Fine regulation of the microstructure of rubber/polypropylene (PP) alloys could remarkably reduce the coefficient of linear thermal expansion (CLTE) while retaining the mechanical properties similar to those of thermoplastic elastomers. Rubber/PP elastomers with different morphologies were successfully prepared by controlling the appropriate rubber type, viscosity ratio, and processing method. The CLTE of the polymer alloy parallel to the microlayer directions was considerably reduced when the rubber domains were deformed into microlayers and co‐continuous with plastic domains. The thickness of the PP layers played a crucial role on CLTE reduction. The CLTE considerably decreased with reduced thickness of the PP layer. The sample with a co‐continuous microlayer structure exhibited good flexibility, high elongation, low hardness, and permanent deformation. Thus, low‐thermal‐expansion elastomer materials may have wide applications. Stress relaxation and strain recovery of the ethylene–propylene–diene terpolymer/PP (70/30 wt %) blend were investigated to further clarify the influence of co‐continuous microlayer structure on mechanical properties. Anisotropic mechanical properties were consistent with the morphology. Results of the stress relaxation behavior test would provide further support to the mechanism of the low thermal expansion of blends with co‐continuous microlayer structure. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43902.  相似文献   
53.
A novel functional polyether‐based elastomer with a benzoxazine structure in its main chain was successfully synthesized via a 1,3‐dipolar cycloaddition reaction. Benefitting from a facile one‐pot synthesis strategy, the elastomer was prepared at low temperature (80°C) and was characterized clearly afterward. The azide‐terminated polyether and acetylene‐terminated benzoxazine were used as the soft and hard segments, respectively, in the polymer chain. Because the triazole rings served as stable linkage between the soft and hard segments, the elastomer possessed good thermal stability (the 5% weight loss temperature could exceed 350°C) compared to traditional elastomers, such as polyurethane. The rigid benzoxazine rings provided the product with good mechanical properties (the tensile strength of the elastomer could exceed 30 MPa). Furthermore, the ring‐opening polymerization of oxazine rings in the structure gifted the elastomer with possibility of thermally induced structural transformation. The thermally induced structural transformation could conveniently realize the conversion of the elastomer to a thermosetting resin. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42820.  相似文献   
54.
Hyperbranched polyurethanes were synthesized from poly(ε‐caprolactone) diol as a macroglycol, butanediol as a chain extender, a monoglyceride of a vegetable oil (Mesua ferrea, castor, and sunflower oils separately) as a biobased chain extender, triethanolamine as a multifunctional moiety, and toluene diisocyanate by a prepolymerization technique with the A2 + B3 approach. The structure of the synthesized hyperbranched polyurethanes was characterized by 1H‐NMR and X‐ray diffraction studies. M. ferrea L. seed‐oil‐based polyurethane showed the highest thermal stability, whereas the castor‐oil‐based one showed the lowest. However, the castor‐oil‐based polyurethane exhibited the highest tensile strength compared to the other vegetable‐oil‐based polyurethanes. All of the vegetable‐oil‐based polyurethanes showed good shape fixity, although the castor‐oil‐based polyurethane showed the highest shape recovery. Thus, the characteristics of the vegetable oil had a prominent role in the control of the ultimate properties, including the shape‐memory behaviors, of the hyperbranched polyurethanes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39579.  相似文献   
55.
Elastomeric Chlorosulfonated polyethylene (Hypalon®) and thermoplastic Polypropylene (PP) based thermoplastic vulcanizates (TPVs) were prepared in presence of different doses of compatibilizer, maleic anhydride grafted PP (PP‐g‐MA) by employing dynamic vulcanization technique. The effect of incorporation in different proportions of compatibilizer on mechanical, spectral, morphological, thermal, and rheological properties of such TPVs was studied and the same were compared to that of virgin PP and amongst themselves. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between Hypalon® and functionalized compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two‐phase morphologies were clearly observed by scanning electron microscopic studies. The Tg values of Hypalon® was modified in the TPVs as exhibited by differential scanning calorimetric studies. TGA studies indicated the increase in thermal stability of all TPVs with respect to the elastomeric Hypalon®. Rheological properties showed that the compatibilizer reduces the melt viscosity of TPVs and thus facilitates the processibility of such TPVs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40312.  相似文献   
56.
This article reports the preparation and characterization of multiwalled carbon nanotubes (MWCNTs)‐filled thermoplastic polyurethane–urea (TPUU) and carboxylated acrylonitrile butadiene rubber (XNBR) blend nanocomposites. The dispersion of the MWCNTs was carried out using a laboratory two roll mill. Three different loadings, that is, 1, 3, and 5 wt % of the MWCNTs were used. The electron microscopy image analysis proves that the MWCNTs are evenly dispersed along the shear flow direction. Through incorporation of the nanotubes in the blend, the tensile modulus was increased from 9.90 ± 0.5 to 45.30 ± 0.3 MPa, and the tensile strength at break was increased from 25.4 ± 2.5 to 33.0 ± 1.5 MPa. The wide angle X‐ray scattering result showed that the TPUU:XNBR blends were arranged in layered structures. These structures are formed through chemical reactions of ? NH group from urethane and urea with the carboxylic group on XNBR. Furthermore, even at a very low loading, the high degree of nanotubes dispersion results in a significant increase in the electrical percolation threshold. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40341.  相似文献   
57.
This article focuses on the reinforcement of hydrogenated acrylonitrile butadiene rubber (HNBR) by cotton fiber as natural reinforcing filler. The effect of fiber alignment on the properties of HNBR compounds and vulcanizates is investigated. Properties of interest include rheological behavior, cure, tensile, abrasion, and dynamic mechanical properties which are correlated to the magnitudes of state‐of‐mix, bound rubber content, crosslink density and fiber alignment. Results obtained reveal that mechanical properties of rubber composites are improved dramatically by the addition of cotton fiber due to the enhanced hydrodynamic effect in association with crosslink density. Furthermore, the degree of fiber alignment is found to depend strongly on shear strain. The results demonstrate the importance of fiber alignment controlled efficiently by shear strain. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41090.  相似文献   
58.
Silicones are widely used for electrical insulation owing to their high dielectric strength and thermal stability. However, recent studies revealed insufficient stability of silicone for high‐temperature applications. To study the effect of Al2O3 fiber on silicone stability, we measured the dielectric strength of unfilled silicone and Al2O3/silicone composites as a function of aging time at 250°C in air and analyzed data by Weibull probability distribution to determine characteristic dielectric strength (E0) and shape parameter (β). Prior to aging, unfilled silicone and composites had similar behavior, with E0 at about 20 kV/mm and β > 15. During aging, unfilled silicone developed both micro‐ and macrocracks, with β dropped below five in 240 h and E0 decreased significantly. Composites developed microcracks, with β dropped below 5 in longer time and E0 remained almost constant. Addition of Al2O3 slowed down crack growth in silicone matrix, resulting in longer lasting high‐temperature dielectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41170.  相似文献   
59.
Thermoplastic vulcanizates (TPVs), which are a special class of elastomer alloy, prepared by dynamic vulcanization possess unique morphology of finely dispersed micron‐size cross‐linked elastomeric particles in a continuous thermoplastic matrix. The present study investigates the microstructure formation of elastomeric phase and its associated morphological changes during reprocessing of TPVs based on poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock co‐polymer (S‐EB‐S) and solution polymerized styrene butadiene elastomer (S‐SBR) by scanning electron microscopy and atomic force microscopy. Semi‐efficient and efficient sulfur‐based curing systems have been adopted to cure the elastomeric phase and a comparative study has been made to demonstrate and explain the effect of reprocessing on the melt rheology and dynamic viscoelasticity of the TPVs. The present work also provides a better insight and guidance to control the microstructure of the cross‐linked elastomeric phase to prepare selectively co‐continuous or dispersed phase morphology. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41182.  相似文献   
60.
The gas‐barrier properties of elastomer are of particular importance, especially for airtight applications. Poly(di‐isoamyl itaconate‐co‐isoprene) (PDII) is a newly invented and respectable biobased elastomer, but the barrier properties of PDII and its composites with carbon black and silica are not satisfying at all. Because there are abundant ester groups in PDII macromolecules and these groups can contribute to the homogeneous dispersion of layer silicates, we applied layered silicates, including montmorillonite (MMT) and rectorite (REC), into the PDII matrix to improve the air impermeability. MMT/PDII and REC/PDII composites were prepared by a cocoagulation method, and the air impermeability of the PDII elastomer was highly improved. The smallest gas permeability index reached 1.7 × 10?17 m2 Pa?1 s?1 at an REC content of 80 phr; this implied a reduction of 85.5%. A comparison of the two types of silicate/PDII composites showed that the MMT/PDII composites had better properties at low filler contents, whereas the REC/PDII composites had better mechanical and gas‐barrier properties at high filler contents. Other structures and properties of the composites were investigated by X‐ray diffraction, transmission electron microscopy, and dynamic mechanical rheology. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40682.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号