首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   296篇
  国内免费   7篇
电工技术   1篇
综合类   6篇
化学工业   913篇
金属工艺   2篇
机械仪表   9篇
能源动力   4篇
轻工业   2篇
石油天然气   3篇
武器工业   6篇
无线电   81篇
一般工业技术   169篇
原子能技术   1篇
自动化技术   1篇
  2024年   3篇
  2023年   40篇
  2022年   1篇
  2021年   80篇
  2020年   62篇
  2019年   30篇
  2018年   61篇
  2017年   54篇
  2016年   77篇
  2015年   73篇
  2014年   102篇
  2013年   65篇
  2012年   36篇
  2011年   38篇
  2010年   38篇
  2009年   48篇
  2008年   48篇
  2007年   46篇
  2006年   42篇
  2005年   36篇
  2004年   43篇
  2003年   45篇
  2002年   28篇
  2001年   16篇
  2000年   18篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   6篇
  1984年   4篇
  1982年   2篇
排序方式: 共有1198条查询结果,搜索用时 15 毫秒
81.
Adhesive‐coated glass fibers (3 and 6 mm in length) were added at loadings of 10, 20, and 30 phr in natural rubber (NR), nitrile rubber (NBR), and ethylene–propylene–diene comonomer (EPDM) formulations in both plain and carbon black mixes. The compounds were mixed in a two‐roll mill and were characterized for their cure properties, tensile, tear, and Mullin's effect. In NR mixes, all of the formulations showed reversion in cure behavior, suggesting that NR remained unaffected. In NBR and EPDM mixes, almost all of the mechanical properties of the fiber improved. The result was more significant in EPDM than in NBR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1111–1123, 2004  相似文献   
82.
The effect of percolation and catalysis of bamboo‐based active carbon (BAC) on the thermal degradation and flame retardancy of ethylene vinyl‐acetate rubber (EVM) composites with intumescent flame retardants (IFR) consisting of ammonium polyphosphate (APP) and dipentaerythritol (DPER) has been investigated. The vulcanization characteristics were analyzed by a moving die rheometer. Thermogravimetric analysis (TGA) and fire behavior tests such as limiting oxygen index (LOI), vertical burning (UL 94), and cone calorimetry were used to evaluate the thermal properties and flame retardancy of EVM composites. Scanning electron microscopy (SEM) was used to study the morphology of residues of EVM composites. The addition of BAC significantly increased the maximum torque (MH) of EVM composites and EVM matrices. The combination of IFR with BAC can improve the thermal stability of EVM composites. Moreover, BAC can enhance char residue and promote the formation of a network for IFR. The current EVM/37IFR/3BAC composite achieved an LOI of 33.6% and a UL 94 V‐0 rating. The PHRR, total heat release (THR), and total smoke release (TSR) for EVM/IFR/BAC were greatly reduced as compared to EVM/40IFR. Also, the mechanical properties of the EVMIFR/BAC composites increased with increasing BAC contents. The physical percolation effect between BAC and EVM before and after thermal degradation, and the chemical catalysis effect between BAC and IFR during thermal degradation are responsible for the improved flame retardancy of EVM composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42414.  相似文献   
83.
The mechanical and electrical properties were investigated for nanocomposites based on carbon nanotubes (CNTs) and conductive carbon black (CB). Solution room‐temperature‐vulcanized silicone rubber was used as a matrix. Vulcanizates based on CNTs and CB was prepared by solution mixing. With the addition of 2 phr of CNTs to the rubber matrix, the Young's modulus increased by 272% and reached as high as ~706% at 8 phr, whereas the modulus increased only 125% for CB specimens at 10 phr. Similarly, the electrical properties at 5 phr content of CNT were ~0.7 kΩ against ~0.9 kΩ at 20 phr CB. The Kraus plot from equilibrium swelling tests shows that the high properties for CNT specimens are due to high polymer–filler interfacial interactions, the small particle size that improves the distribution of the filler in a highly exfoliated state, and high electrical connective networks among the filler particles. These improvements can especially influence medical products such as feeding tubes, seals and gaskets, catheters, respiratory masks and artificial muscles. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44407.  相似文献   
84.
Electrorheological elastomers (EREs) present a tunable viscoelasticity with the application of an electric field. For their application, it is necessary to investigate the viscoelasticity of the EREs under various loading conditions and establish an accurate constitutive model. In this study, anisotropic silicone‐rubber‐based EREs with 30 vol % TiO2–urea core–shell particles were prepared under an orientation electric field. We evaluated their viscoelasticities by testing their shear stress–shear strain hysteresis loops under various electric fields, frequencies, and strain amplitudes. On the basis of the experimental data, a nonlinear, revised Bouc–Wen phenomenological model was established, and the parameters in the model were identified. The results indicate that the revised model could accurately describe the viscoelastic properties of the EREs within a low frequency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45407.  相似文献   
85.
以聚醚多元醇3010,甲苯二异氰酸酯,1,4-丁二醇和催化剂为原料,采用一步法来制备浇注型聚氨酯弹性体.研究了工艺条件(不同固化温度、固化时间和初始反应温度)以及浇注成型产生的缺陷对聚氨酯弹性体力学性能的影响.结果表明:采用固化温度为140℃,固化时间为4 h和初始反应温度为50~60℃的合成工艺条件时,聚氨酯弹性体的综合性能达到最佳,并且能够解决浇注成型时所产生的缺陷,可使产品的综合性能得以提高.  相似文献   
86.
We fabricate composite hydrogels using surface‐modified cellulose nanofiber (CNF) and N‐isopropylacrylamide (NIPAm) as a multifunctional crosslinker and monomer, respectively. We expect to produce unique network structures that lead to elastomeric properties rarely reported for CNF‐based materials. The modification of CNF is performed to introduce polymerizable vinyl groups onto the surface of CNF via condensation between the surface hydroxyl groups and 3‐(trimethoxysilyl)propylmethacrylate. The modification and morphology of the surface‐modified CNF (mCNF) are confirmed by FTIR, solid‐state NMR, and FE‐SEM, respectively. We conduct in situ radical polymerization under various conditions using mixtures of the mCNF aqueous suspension, NIPAm monomer, radical initiator, and catalyst. The mechanical properties of the obtained hydrogels (water content = 90 wt %) are evaluated. The gels can be elastically stretched to more than 700 times their original lengths and exhibit an apparent shape recovery with a small permanent deformation (~1/5 of the applied deformation under the gravity field). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42906.  相似文献   
87.
以对苯二异氰酸酯(PPDI)、低聚物多元醇和小分子二元醇等为原料合成了PPDI浇注型聚氨酯弹性体,考察了不同低聚物多元醇对弹性体的物理机械性能、动态力学性能及热氧老化性能的影响,并与MDI和TDI型聚氨酯弹性体进行了比较。结果表明,PPDI型聚氨酯弹性体较MDI、TDI型弹性体具有更低的内生热、更高的回弹性,可用于轮胎胎面材料的制备。  相似文献   
88.
Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large‐area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity‐order index tuning exceeds that of traditional electro‐optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing.  相似文献   
89.
Some natural biopolymers such as spider silk exhibit superb mechanical properties, characterised by their great toughness. Synthetic polyurethane (PU) copolymers also endow great toughness but lack silk's stiffness and strength. The aim of this work was to elucidate the role of segment block architectural features that influence PU stiffness and strength after cold drawing. For this purpose PUs with varied soft segment character, crystalline versus rubbery, as well as with different hard segment chemistries, 4,4′‐diphenylmethane diisocyanate/1,4‐butanediol versus 1,6‐hexamethylene diisocyanate/1,4‐butanediol, were synthesised by a two‐step polymerisation method. We found that the architecture of both block segments has a dramatic influence on drawn PU mechanical performance, in which PUs with crystallisable soft segments and crystalline hard segments are shown to have a greater impact on developing stiffer and stronger materials. © 2013 Society of Chemical Industry  相似文献   
90.
Dey J  Tran RT  Shen J  Tang L  Yang J 《大分子材料与工程》2011,296(12):1149-1157
We have recently reported upon the development of crosslinked urethane-doped polyester (CUPE) network elastomers, which was motivated by the desire to overcome the drawbacks presented by crosslinked network polyesters and biodegradable polyurethanes for soft tissue engineering applications. Although the effect of the isocyanate content and post-polymerization conditions on the material structure-property relationship was examined in detail, the ability of the diol component to modulate the material properties was only studied briefly. Herein, we present a detailed report on the development of CUPE polymers synthesized using diols 4, 6, 8, 10, or 12 methylene units in length in order to investigate what role the diol component plays on the resulting material's physical properties, and assess their long-term biological performance in vivo. An increase in the diol length was shown to affect the physical properties of the CUPE polymers primarily through lowered polymeric crosslinking densities and elevated material hydrophobicity. The use of longer chain diols resulted in CUPE polymers with increased molecular weights resulting in higher tensile strength and elasticity, while also increasing the material hydrophobicity to lower bulk swelling and prolong the polymer degradation rates. Although the number of methylene units largely affected the physical properties of CUPE, the choice of diol did not affect the overall polymer cell/tissue-compatibility both in vitro and in vivo. In conclusion, we have established the diol component as an important parameter in controlling the structure-property relationship of the polymer in addition to diisocyanate concentration and post-polymerization conditions. Expanding the family of CUPE polymers increases the choices of biodegradable elastomers for tissue engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号