首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   25篇
  国内免费   12篇
综合类   22篇
化学工业   178篇
金属工艺   6篇
机械仪表   23篇
建筑科学   21篇
矿业工程   1篇
能源动力   2篇
轻工业   66篇
水利工程   4篇
无线电   5篇
一般工业技术   5篇
冶金工业   7篇
自动化技术   31篇
  2023年   8篇
  2022年   41篇
  2021年   45篇
  2020年   11篇
  2019年   11篇
  2018年   9篇
  2017年   10篇
  2016年   15篇
  2015年   12篇
  2014年   14篇
  2013年   24篇
  2012年   22篇
  2011年   18篇
  2010年   15篇
  2009年   21篇
  2008年   12篇
  2007年   11篇
  2006年   11篇
  2005年   10篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   9篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
  1961年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
21.
22.
Xenoestrogens are widely diffused in the environment and in food, thus a large portion of human population worldwide is exposed to them. Among alimentary xenoestrogens, phytoestrogens (PhyEs) are increasingly being consumed because of their potential health benefits, although there are also important risks associated to their ingestion. Furthermore, other xenoestrogens that may be present in food are represented by other chemicals possessing estrogenic activities, that are commonly defined as endocrine disrupting chemicals (EDCs). EDCs pose a serious health concern since they may cause a wide range of health problems, starting from pre-birth till adult lifelong exposure. We herein provide an overview of the main classes of xenoestrogens, which are classified on the basis of their origin, their structures and their occurrence in the food chain. Furthermore, their either beneficial or toxic effects on human health are discussed in this review.  相似文献   
23.
介绍了内分泌干扰物(EDCs)的分类、特点及其作用机理,分析了膜技术去除水体中EDCs的影响因素,阐述了膜生物反应器的应用近况。膜分离技术作为一种新型的水处理技术,随着其工艺技术日趋成熟、运行成本逐步降低,必将广泛应用于水体中EDCs的去除。  相似文献   
24.
25.
A combination of immuno-electron microscopy and electron energy-loss spectrum-imaging was used to map the distributions of endocrine polypeptide hormones and proteins in mouse pancreatic islet of Langerhans. Tissue was analyzed from control animals and from mice that were heterozygous for the Anx7 gene, which defines a Ca2+/GTP-dependent membrane fusion and ion channel protein. The heterozygous Anx7 (+/-) mouse displays defects in IP3 receptor mediated Ca2+ signaling and insulin secretion. Therefore, information was obtained about the distributions of the hormones insulin and glucagon, as well as the proteins ANX7 and the IP3 receptor. Insulin secretion appears to be defective in the mutants. It was found from immunolabeling experiments that expression of the IP3 receptor is reduced in mutant islets compared to control islets. Subcellular distributions of sulfur and nitrogen obtained by electron energy-loss spectrum-imaging showed that the insulin concentrations of beta granules were essentially the same in control and mutant islets. By contrast, immunogold labeling of mutant islets shows more insulin immunoreactivity in the beta granules. It follows that insulin may be packaged differently in mutant islets, making antigenic determinants more available to the labeling antibody. The increased rate of insulin secretion in the hyperplastic mutant islets can be explained by compensatory increases in islet size, rather than by an increased insulin concentration in the beta cells. The results indicate that reduced ANX7 expression leads to defects in the IP3 receptor expression in the endocrine cells of the mutant mouse. Increased size of the islet or of adrenal medulla may be a compensatory mechanism for secretion defect by individual endocrine cells. Defects in IP3 receptor expression, and documented consequences of a Ca2+ signaling defect, lead to other changes in organelles such as the mitochondrial number in islet beta-cells. The effects and consequences of reduced ANX7 expression on mitochondria are evident in ultrastructural observations.  相似文献   
26.
This study aimed to evaluate metabolic and endocrine adaptations to energy intake in multiparous Holstein cows (n = 90; mean 9434 kg energy-corrected milk yield/305 d) over the first 20 wk postpartum and to assess the association of leptin with metabolic, endocrine, and zootechnical traits. Concentrates were fed automatically for 24 h at 30% (C30) or 50% (C50) of total dry matter intake (DMI) from wk 1 to 10 postpartum and at linearly reduced amounts thereafter. Roughage was fed for ad libitum intake. The DMI was measured over 24 h; milk yield and body weight (BW), twice/d; milk composition, 4 times/wk; and milk acetone, weekly. Blood samples for determination of metabolite, hormone, and electrolyte concentrations and enzyme activities were obtained at wk 2 prepartum, and at wk 1 to 16 and at wk 20 postpartum from 0730 to 0900. Body condition scores (BCS) and backfat thickness were measured postpartum and during wk 1, 4, 8, 12, 16, and 20. Energy balance (EB) was considerably lower, but milk yield only slightly lower, in C30 than C50. Metabolic stress was more marked in C30 than C50, expressed by lower, glucose, insulin, insulin-like growth factor-1 (IGF-1), triiodothyronine, milk protein, and lactose concentrations, higher nonesterified fatty acid, beta-hydroxybutyrate, growth hormone, and milk acetone concentrations, and an accelerated decrease in BCS and backfat thickness. Nevertheless, C30 adapted successfully and thus maintained high milk yields despite negative EB. Leptin concentrations were lower in C30 than in C50 over the first 20 wk postpartum and were positively associated with BCS, EB, BW, cholesterol, albumin, insulin, and IGF-1; negatively associated with DMI and triiodothyronine; and were higher in cows calving in spring than in fall. Leptin is one among several factors involved in the regulation of energy metabolism and may be important for overall homeostatic and homeorhetic control of metabolism and thus for maintenance of performance.  相似文献   
27.
We describe a system for the automatic acquisition and processing of digital images in a high-resolution X-ray microscope, including the formation of large-field high-resolution image montages. A computer-controlled sample positioning stage provides approximate coordinates for each high-resolution subimage. Individual subimages are corrected to compensate for time-varying, non-uniform illumination and CCD-related artefacts. They are then automatically assembled into a montage. The montage assembly algorithm is designed to use the overlap between each subimage and multiple neighbours to improve the performance of the registration step and the fidelity of the result. This is accomplished by explicit use of recorded stage positions, optimized ordering of subimage insertion, and registration of subimages to the developing montage. Using this procedure registration errors are below the resolution limit of the microscope (43 nm). The image produced is a seamless, large-field montage at full resolution, assembled automatically without human intervention. Beyond this, it is also an accurate X-ray transmission map that allows the quantitative measurement of anatomical and chemical features of the sample. Applying these tools to a biological problem, we have conducted the largest X-ray microscopical study to date.  相似文献   
28.
BACKGROUND: The removal of endocrine disrupting chemicals (EDCs) from drinking water is of great importance. Chitin isolated from crab shells was used as a biosorbent for removal of three EDCs—benzo(a)antracene, β‐estradiol and bisphenol A—present in contaminated groundwater. Fourier transform infra‐red (FTIR) spectroscopy, porosimetry and scanning electron microscope (SEM) were used for structural elucidation of chitin. Experiments were conducted using batch adsorption mode under different conditions of initial EDCs concentration, solution pH and adsorbent dose. The effect of chitin particle size was also investigated. Batch adsorption data were fitted to Langmuir and Freundlich isotherms and pseudo‐first‐ and second‐order models for kinetic study. RESULTS: The maximum adsorption capacity of chitin by the three EDCs, calculated using the Langmuir equation, ranged from 42.9 to 84 mg g?1. The adsorption of EDCs by chitin was due primarily to electrostatic forces. The measurement of zeta potential indicated that chitin has higher surface charge in alkaline pH, resulting in reduction in removal of EDCs with increasing pH. Complementary to the experimental results molecular simulations were also performed on HyperChem software to understand the adsorption mechanism between chitin and EDCs in aquesous solutions. Chitin was regenerated after washing with methanol/acetic acid (1/3, v/v) and the regeneration process was repeated for 10 cycles, which showed 90% adsorption capacity retained by chitin. CONCLUSIONS: The experimental results suggest that chitin could be employed as an adsorbent in the removal of EDCs from aqueous solutions, and the adsorption potential of used chitin can be recovered by methanol/acetic acid solvent washings. The reusable biosorbent chitin would be cost‐effective and a better option for future water remediation endeavours. Copyright © 2010 Society of Chemical Industry  相似文献   
29.
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.  相似文献   
30.
The present study was undertaken to evaluate the effect of oxidative damage due to excessive protein diet on pancreas function in mice. For this purpose, thirty male (C57BL/6J) mice were randomly divided into three groups and fed on different diets as follows: group 1 was fed on a normal diet, group 2 was fed on an excessive protein diet and group 3 was fed on an excessive protein diet supplemented with 0.06 g/kg cysteamine. Each group was fed for 2 weeks, and then pancreas samples were collected to examine oxidative and antioxidant parameters and pancreas function. The results showed that ingestion of an excessive protein diet markedly increased contents of malondialdehyde (MDA) and decreased T-AOC and activities of antioxidants SOD and GSH-Px, compared with a normal diet (P < 0.05). Pancreas weight and concentration of protein, DNA and RNA were significantly higher (P < 0.05), digestive enzyme activities were significantly lower and levels of somatostatin and insulin were higher in mice fed with an excessive protein diet than those fed with a normal protein diet. In the group fed with excessive protein diet supplemented with cysteamine, oxidative stress was mitigated and pancreas function was improved. These data demonstrate that excessive protein ingestion could increase oxidative damage of free radicals on pancreas function through destroying the balance of oxidants and antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号