首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   24篇
  国内免费   15篇
电工技术   8篇
综合类   7篇
化学工业   129篇
金属工艺   24篇
机械仪表   25篇
建筑科学   27篇
矿业工程   3篇
能源动力   7篇
轻工业   24篇
水利工程   2篇
石油天然气   39篇
无线电   6篇
一般工业技术   41篇
冶金工业   13篇
原子能技术   1篇
自动化技术   7篇
  2024年   2篇
  2023年   9篇
  2022年   12篇
  2021年   8篇
  2020年   9篇
  2019年   14篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   7篇
  2014年   20篇
  2013年   21篇
  2012年   19篇
  2011年   21篇
  2010年   25篇
  2009年   14篇
  2008年   25篇
  2007年   17篇
  2006年   20篇
  2005年   20篇
  2004年   20篇
  2003年   11篇
  2002年   8篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有363条查询结果,搜索用时 31 毫秒
361.
论新时代下的先进包装系统   总被引:1,自引:1,他引:1  
面对转变经济发展方式的新形势,在回顾包装系统发展历史的基础上,对今后值得研发的低碳包装、绿色包装、生态包装、智慧包装、安全包装等先进包装系统进行了全面的探讨,以期对包装科技工作者的研究方向提供一定的参考。  相似文献   
362.
Hydrogels have been widely explored to adapt to different application circumstances. As typical wet-soft materials, the high-water content of hydrogels is beneficial to their wide biomedical applications. Moreover, hydrogels have been displaying considerable application potential in some high-tech areas, like brain-computer interface, intelligent actuator, flexible sensor, etc. However, traditional hydrogel is susceptive to freezing below zero, dehydration, performance swelling-induced deformation, and suffers from mechanical damage in extremely mechanical environments, which result in the loss of wet-soft peculiarities (e.g., flexibility, structure integrity, transparency), greatly limiting their applications. Therefore, reducing the freezing point, improving the dehydration/solution resistance, and designing mechanical adaptability are effective strategies to endow hydrogels with the extreme environmental adaptability, thus broadening their application fields. This review systematically summarizes research advances of environmentally adaptive hydrogels (EAHs), comprising anti-freezing, dehydration-resistant, acid/base/swelling deformation-resistant, and mechanical environment adaptive hydrogels (MEAHs). Firstly, fabrication methods are presented, including the deep eutectic solvent/ionic liquid substituent, the addition of salts, organogel, polymer network modification, and double network (DN) complex/nanocomposite strategy, etc. Meanwhile, the features of different approaches are overviewed. The mechanisms, properties, and applications (e.g., intelligent actuator, wound dressing, flexible sensor) of EAHs are demonstrated. Finally, the issues and future perspectives for EAHs’ researches are demonstrated.  相似文献   
363.
Nanozymes and amorphous nanomaterials attract great attention owing to their extraordinary properties. However, the requirements for special synthesis conditions become the bottleneck of their development. Herein, a new strategy involving the DNA-based coordination-driven self-assembly is reported for the synthesis of a novel amorphous/crystalline hetero-phase nanozyme (Fe-DNA). For the synthesis of both nanozymes and amorphous materials, this strategy is simple and controllable, avoiding the traditionally employed harsh conditions. Benefitting from the amorphous structure and the superior physicochemical properties, the synthesized Fe-DNA nanozyme is subsequently found to exhibit a smaller Michaelis constant value for hydrogen peroxide (H2O2) (0.81 mm ) than that of horseradish peroxidase (HRP) (3.70 mm ), demonstrating the stronger affinity of the Fe-DNA nanozyme toward H2O2. The Fe-DNA nanozyme also shows significant peroxidase-like activity but only negligible oxidase-like activity, a characteristic which releases the corresponding assay system from oxygen interference, thereby improving the performance of the nanozyme-based sensing platform. In addition, compared with other nanozymes, the novel Fe-DNA nanozyme is degradable via phosphate; thus, mitigating potential environmental threat. This work provides novel amorphous/crystalline hetero-phase nanozymes and opens a new avenue for the design of amorphous nanomaterials and nanozymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号