首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8633篇
  免费   405篇
  国内免费   161篇
电工技术   53篇
技术理论   2篇
综合类   284篇
化学工业   5429篇
金属工艺   83篇
机械仪表   89篇
建筑科学   75篇
矿业工程   25篇
能源动力   223篇
轻工业   509篇
水利工程   1篇
石油天然气   1368篇
武器工业   17篇
无线电   102篇
一般工业技术   795篇
冶金工业   54篇
原子能技术   26篇
自动化技术   64篇
  2024年   86篇
  2023年   95篇
  2022年   137篇
  2021年   192篇
  2020年   186篇
  2019年   179篇
  2018年   157篇
  2017年   219篇
  2016年   215篇
  2015年   226篇
  2014年   376篇
  2013年   436篇
  2012年   566篇
  2011年   542篇
  2010年   426篇
  2009年   446篇
  2008年   362篇
  2007年   568篇
  2006年   540篇
  2005年   465篇
  2004年   398篇
  2003年   367篇
  2002年   317篇
  2001年   300篇
  2000年   244篇
  1999年   246篇
  1998年   201篇
  1997年   147篇
  1996年   112篇
  1995年   81篇
  1994年   79篇
  1993年   53篇
  1992年   39篇
  1991年   32篇
  1990年   23篇
  1989年   29篇
  1988年   16篇
  1987年   7篇
  1986年   6篇
  1985年   19篇
  1984年   21篇
  1983年   14篇
  1982年   20篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1951年   3篇
排序方式: 共有9199条查询结果,搜索用时 15 毫秒
11.
用共沉淀法制备Fe3O4磁流体,总结出用十二烷基磺酸钠与聚乙二醇作为表面活性剂制备水基磁流体的合适条件:(1)反应温度为室温或不高于35℃;(2)表面活性剂十二烷基磺酸钠的最佳用量为0.0030~0.0040 g/80 mL;(3)第一次包裹的最佳pH为9~10;(4)聚乙二醇作为第二次包裹的表面活剂时,体系最佳温度为40℃左右;(5)表面活性剂聚乙二醇的最佳用量为0.0050~0.0060 g/80 mL。通过实验制得了能稳定存在180 d的水基磁流体。并用透射电镜、红外光谱、分光光度计、古埃磁天平等进行了初步表征。  相似文献   
12.
乙烯分离技术分析   总被引:3,自引:0,他引:3  
王振维 《乙烯工业》2004,16(3):40-43
从技术先进性、能耗、流程复杂性和运行稳定性等诸多方面对占据乙烯市场的三大分离技术进行了分析。并认为用户在选择分离技术时应综合考虑各方面因素,把握重点,选择出适合的技术。  相似文献   
13.
本文对生产高纯度丁烯-1的Alphabntol工艺进行了技术经济评价,认为该工艺条件简单、反应条件温和,而且投资少,所以很适合事在发展中国家应用。  相似文献   
14.
The first measurement of a turnover rate with respect to surface intermediate concentration in a high pressure heterogeneous catalytic reaction is reported. By using infrared-visible sum frequency generation to study the hydrogenation of ethylene on Pt(111), it was found that the surface concentration of -bonded ethylene, the key reaction intermediate, represented approximately 4% of a monolayer. Thus the absolute turnover rate per surface adsorbed ethylene molecule is 25 times faster than the rate measured per platinum atom. To explain these results, we propose a model of weakly adsorbed ethylene intermediates reacting on atop sites.  相似文献   
15.
The liquid-liquid equilibrium of polyethylene glycol dimethyl ether 2000 (PEGDME2000)+K2HPO4+H2O system has been determined experimentally at T=(298.15,303.15,308.15 and 318.15) K. The liquid-solid and complete phase diagram of this system was also obtained at T=(298.15 and 308.15) K. A nonlinear temperature dependent equation was successfully used for the correlation of the experimental binodal data. Furthermore, a temperature dependent Setschenow-type equation was successfully used for the correlation of the tie-lines of the studied system. Moreover, the effect of temperature on the binodal curves and the tie-lines for the investigated aqueous two-phase system have been studied. Also, the free energies of cloud points for this system and some previously studied systems containing PEGDME2000 were calculated from which it was concluded that the increase of the entropy is the driving force for formation of aqueous two-phase systems. Additionally, the calculated free energies for phase separation of the studied systems were used to investigate the salting-out ability of the salts having different anions. Furthermore, the complete phase diagram of the investigated system was compared with the corresponding phase diagrams of previously studied systems, in which the PEGDME2000 has been used, in order to obtain some information regarding the phase behavior of these PEGDME2000+salt+water systems.  相似文献   
16.
In this work, LiNi1/3Mn1/3Co1/3O2 powders were synthesized from co-precipitated spherical metal hydroxide. In the voltage range of 2.8–4.2, 2.8–4.4, and 2.8–4.6 V, the discharge capacities of LiNi1/3Mn1/3Co1/3O2 electrode were 163, 177, and 193 mAh⋅g−1, respectively. A gel polymer electrolyte (GPE) was also prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer. LiNi1/3Mn1/3Co1/3O2/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2 × 10−3 S⋅cm−1 at room temperature. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability.  相似文献   
17.
研究了乙二醇在氧化物CeO2、NiO和Co3O4增强Pd/C催化剂上的碱性溶液中电化学氧化活性,结果显示虽然纯Pd/C催化剂对乙二醇的电化学氧化活性非常低以及抗催化剂毒化作用非常弱,其电化学性能远远比不上Pt/C催化剂。但添加氧化物CeO2、NiO和Co3O4后,Pd/C对乙二醇电化学氧化催化活性和抗毒化能力都得到大幅度提高,甚至超过商业催化剂E-TEKPt/C。三种氧化物增强Pd/C催化剂的电化学活性顺序为Pd-Co3O4(质量比为2︰1,以下同)/C>Pd-NiO(4︰1)/C>Pd-CeO2(1.3︰1)/C。  相似文献   
18.
利用金相显微镜、X射线衍射仪、光谱分析仪等测试仪器,通过对炉管的材质、外观形貌、金相组织、组分组成等方面进行检测,分析了乙烯裂解炉炉管失效的原因.结果表明,材质为Incoloy 800 H合金的裂解炉管可满足乙烯裂解工况的工艺要求,炉管失效主要是由于高温过热引起的氧化腐蚀破坏所致,另外管内介质对腐蚀也有促进作用.  相似文献   
19.
20.
Ethylene is an essential platform chemical with a conjugated double bond, which can produce many secondary chemical products through copolymerisation. At present, ethylene production is mainly from petroleum fractionation and cracking, which are unsustainable in the long term, and harmful to our environment. Therefore, a hot research field is seeking a cleaner method for ethylene production. Based on the model ethylene-forming enzyme (Efe) AAD16440.1 (6vp4.1.A) from Pseudomonas syringae pv. phaseolicol, we evaluated five putative Efe protein sequences using the data derived from phylogenetic analyses and the conservation of their catalytic structures. Then, pBAD expression frameworks were constructed, and relevant enzymes were expressed in E. coli BL21. Finally, enzymatic activity in vitro and in vivo was detected to demonstrate their catalytic activity. Our results show that the activity in vitro measured by the conversion of α-ketoglutarate was from 0.21–0.72 μmol ethylene/mg/min, which varied across the temperatures. In cells, the activity of the new Efes was 12.28–147.43 μmol/gDCW/h (DCW, dry cellular weight). Both results prove that all the five putative Efes could produce ethylene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号