首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   15篇
  国内免费   14篇
电工技术   2篇
综合类   13篇
化学工业   97篇
金属工艺   7篇
机械仪表   9篇
建筑科学   4篇
轻工业   38篇
无线电   8篇
一般工业技术   23篇
冶金工业   1篇
自动化技术   13篇
  2024年   1篇
  2023年   5篇
  2022年   26篇
  2021年   19篇
  2020年   9篇
  2019年   9篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   8篇
  2014年   10篇
  2013年   6篇
  2012年   15篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   10篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有215条查询结果,搜索用时 0 毫秒
91.
Tencel纤维纱线染色生产实践   总被引:1,自引:0,他引:1  
指出了Tencel纤维的特点,介绍了Tencel纤维纱线的染色和原纤化处理的新工艺。  相似文献   
92.
Fibrils formed by human serum transferrin [(1–3 μM ) apo‐Tf, partially iron‐saturated (Fe0.6‐Tf) and holo‐Tf (Fe2‐Tf) forms], from dilute bicarbonate solutions, were deposited on formvar surfaces and studied by electron microscopy. We observed that possible bacterial contamination appears to give rise to long, pea‐pod‐like (PPL) structures for Fe2‐Tf, attributable to the formation of polyhydroxybutyrate (PHB) storage granules, under the nutrient‐limiting conditions used. These PPL structures contained periodic nanomineralisation sites susceptible to uranyl stain. Extended incubation of transferrin solutions (about four days) gave rise to extensive transferrin fibril structures. Optical microscopy and AFM studies showed that red blood cells (RBCs) readily adhere to these fibrils. Moreover, the fibrils appear to penetrate RBC membranes and to induce rapid cell destruction (within about 5 h). It is speculated that in situations in vivo where transferrin fibrils can form, such interactions might have adverse physiological consequences, and further studies could aid the understanding of related pathological events.  相似文献   
93.
针对Lyocell纤维出现的原纤化问题,尝试用氮丙啶基化合物作为Lyocell纤维的交联剂抑制原纤化趋势,试验证明有比较好的抗原纤化能力,并适合在线交联。经过摩擦试验等证明氮丙啶化合物能起到较好的交联作用,提高湿摩擦时间,并且对Lyocell纤维原有的力学性能影响不大。  相似文献   
94.
It is feasible to control the phase morphology and orientation for immiscible polymer blends to manipulate their properties. In this paper, the blend of polyamide 1010 (PA1010) and isotactic polypropylene (iPP) (mainly at a fixed ratio of PA1010/iPP = 80/20) was used as an example to demonstrate the effect of shear on the morphology and resultant mechanical properties. After being melt blended, the injection‐molded bars were prepared via a dynamic packing equipment to impose a prolonged shearing on the melts during the solidification stage. By controlling the shear time, the structure evolution and morphological development of the blends can be well controlled. Mechanical measurement of the molded bar showed a dramatically improved tensile property and impact strength with increasing shear time. Morphological examination revealed that the iPP droplets are elongated and become thin fibrils along the shear direction with increasing shear time. The shear‐induced fibrillation, instead of orientation, is believed to be responsible for the largely improved properties of the blend, particularly for the impact strength. The toughening mechanism is discussed based on the combined effect of hindrance of crack propagation and the transferring and bearing of the load due to the existence of the fibrils. This was further proved by changing the blending ratio and using low molecular weight iPP. Finally, we propose a concept for designing blending materials with good comprehensive properties. Copyright © 2011 Society of Chemical Industry  相似文献   
95.
The development of micro-cellular foams with ultra-high compressive strength and high volume expansion ratio (VER) is a challenging task. Herein, polyamide 12T (PA12T) micro-cellular foams with ultra-high compressive strength were fabricated via in situ polytetrafluoroethylene (PTFE) fibrillation using supercritical CO2 foaming technology and a chain extender. The resulting branched structure showed considerably improved viscoelasticity and foaming performance, thus improving the cell morphology of the PA12T foam and exhibiting high VER. The PTFE fibrillation network induced melt strength enhancement, crystallization nucleation, and cell nucleation. The branched PA12T foam with 1.5 wt% PTFE exhibited the smallest cell diameter (15 μm) and highest cell density (3 × 109 cells/cm3). The compressive strength of the foam (0.50 MPa under 5% strain) was 70% higher than that of pure PA12T. This research offers an effective method for producing high-VER PA12T foams with adjustable micro-cellular structures and excellent mechanical properties.  相似文献   
96.
The adhesion mechanisms of two acrylic Pressure-Sensitive-Adhesives on a stainless steel probe are investigated with a custom-designed probe tack apparatus. Our setup allows the simultaneous acquisition of a nominal stress and strain curve, and the observation of the adhesive film from underneath the transparent substrate. The temperature was varied in the range -20°C to 50°C and the debonding rate in the range 1–10000 μm/s. For all conditions we observed, upon debonding, the formation of cavities at or near the interface between the probe and the film. These cavities initially grew predominantly in the plane of the film but, at higher values of nominal strain, the walls between the cavities were stretched in the direction normal to the plane of the ifim to become a fibrillar structure. The transition from a cavitated structure to a fibrillar one was only found within a time-temperature window of rheological properties of the adhesive, while the adhesion energy was found to be mainly related to the elongational properties of the adhesive. The maximum tensile stress observed in the probe tack experiment was directly related to the appearance of the cavities and showed a good correlation with the shear modulus of the adhesive, while the adhesion energy was found to be mainly related to the elongational properties of the adhesive. The presence of 2% acrylic acid as a comonomer had a negligible effect on the maximum stress but a very important one on the formation of a fibrillar structure and on the locus of failure.  相似文献   
97.
根据实际临床需求, 针对房颤微波消融中常见的逐点消融术, 探究时间功率和天线距离对相邻2个消融点消融效果的影响, 找出最佳的消融功率和最佳天线距离, 为临床治疗提供参考.构建了包括血液、心肌、脂肪的3层模型, 采用2.45 GHz频率进行了电磁热耦合计算并得到了心肌中温度的分布.功率采取30、40、50和60 W, 2个消融点之间的距离采取0.5、1、1.5和2 cm.结果表明:功率为30 W和40 W时会导致消融区域比较小;功率为60 W时会导致最高温度过高且消融的范围与功率为50 W的时候相比并没有显著的提升;相邻2个消融点间距为0.5cm和1 cm时会导致总消融区域比较小且最高温度过高;间距为2 cm时无法形成连续透壁的消融区域.因此50 W是最佳消融功率, 1.5 cm是最佳消融2点间距, 可以在保证最高温度不过高、连续透壁的情况下, 获得比较大的总消融区域和较高的能量利用效率.在50 W、1.5 cm的最佳消融方案下, 逐点消融2个点所需要的总消融时间为43.2 s, 最高温度为87.2℃, 连续透壁消融长度、心肌内部最大消融长度及最大消融宽度分别为2.486、2.770、1.865 cm.  相似文献   
98.
采用微纳叠层共挤制备了乙烯-辛烯共聚物/聚对苯二甲酸丙二醇酯(POE/PTT)原位成纤复合材料,通过扫描电子显微镜分析了分散相PTT含量对其在基体中的形态及分布的影响;讨论了PTT含量对复合材料静态力学性能的影响,利用差示扫描量热仪分析了PTT对POE基体结晶性能的影响。结果表明,随着分散相含量的提高,PTT微纤的数量逐渐增加,降低了POE基体的结晶度,当POE/PTT质量比为85/15时,拉伸强度较纯POE提高了16.9 %。  相似文献   
99.
采用聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、碳纳米管(CNTs)制备了具有纤维结构的微孔发泡复合材料,借助层叠器内部流道的变化,实现了造粒阶段PET的连续化原位成纤.通过差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、矢量网络分析仪和万能试验机对复合材料的结晶性能、表观形态、电磁屏蔽效能(EMI SE)和拉...  相似文献   
100.
Abstract

Experiments were conducted to study the influence of various concentration of alkalis on the pilling properties of lyocell fabrics. Generally, the lyocell fabric has more tendency of pill formation due to fibrillation properties. Therefore, present work is focused on the impact of alkali pretreatments with various concentration from 0.5?mol/L to 3?mol/L on lyocell with their pilling resistance. Due to the morphological changes, pilling results are attributed to the alkali types and their concentration. Treatment with TmAH and LiOH at 2?mol/L shows the reduction of a number of fibrils leading to reduce the pill generation significantly. Carboxyl content and iodine sorption value are analyzed to find the impact of alkali on the accessible region and structural changes respectively, also surface modification was observed by SEM to confirm the surface characteristics. Overall results shows that the reduction of fibrillation leads to better pilling resistance of lyocell fabric.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号