首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3544篇
  免费   278篇
  国内免费   100篇
电工技术   23篇
综合类   61篇
化学工业   1530篇
金属工艺   272篇
机械仪表   90篇
建筑科学   67篇
矿业工程   23篇
能源动力   69篇
轻工业   289篇
水利工程   36篇
石油天然气   41篇
武器工业   5篇
无线电   187篇
一般工业技术   584篇
冶金工业   322篇
原子能技术   73篇
自动化技术   250篇
  2024年   21篇
  2023年   124篇
  2022年   185篇
  2021年   219篇
  2020年   156篇
  2019年   137篇
  2018年   132篇
  2017年   128篇
  2016年   108篇
  2015年   141篇
  2014年   157篇
  2013年   281篇
  2012年   160篇
  2011年   214篇
  2010年   152篇
  2009年   183篇
  2008年   149篇
  2007年   149篇
  2006年   144篇
  2005年   142篇
  2004年   108篇
  2003年   89篇
  2002年   78篇
  2001年   66篇
  2000年   51篇
  1999年   36篇
  1998年   60篇
  1997年   45篇
  1996年   38篇
  1995年   37篇
  1994年   34篇
  1993年   21篇
  1992年   17篇
  1991年   15篇
  1990年   17篇
  1989年   16篇
  1988年   13篇
  1987年   16篇
  1986年   14篇
  1985年   13篇
  1984年   13篇
  1983年   9篇
  1982年   6篇
  1981年   4篇
  1964年   2篇
  1962年   2篇
  1961年   3篇
  1959年   2篇
  1957年   2篇
  1955年   2篇
排序方式: 共有3922条查询结果,搜索用时 0 毫秒
21.
The recombination dynamics of singlet and triplet oppositely charged polarons under the influence of electron–electron (e–e) interactions in coupled polymer chains are investigated using a multi-configurational time-dependent Hartree–Fock (MCTDHF) method. During recombination processes, singlet and triplet intrachain excitons are important products. By calculating the yields of the singlet and triplet intrachain excitons as a function of the on-site and long-range e–e interactions, it is found that the yields of the singlet and triplet intrachain excitons both decrease with increasing on-site e–e interactions. On the other hand, as the long-range e–e interactions increase, the yields of singlet intrachain excitons initially increase and then maintain a constant value, while the yields of the triplet intrachain excitons decrease. Our results show that the long-range e–e interaction is of fundamental importance and improves the luminescence efficiency in coupled polymer chains. Finally, the influence of the polymer chain length on the yields of singlet and triplet intrachain excitons is discussed.  相似文献   
22.
Amorphous and polycrystalline Sn‐doped IrO2 thin films, Ir1‐xSnxO2, are grown for the first time. Their electrical response and strength of the spin–orbit coupling are studied in order to better understand and tailor its performance as spin current detector material. These experiments prove that the resistivity of IrO2 can be tuned over several orders of magnitude by controlling the doping content in both the amorphous and the polycrystalline state. In addition, growing amorphous samples increase the resistivity, thus improving the spin current to charge current conversion. As far as the spin–orbit coupling is concerned, the system not only remains in a strong spin–orbit coupling regime but it seems to undergo a slight enhancement in the amorphous state as well as in the Sn‐doped samples.  相似文献   
23.
Teleoperation during a catastrophic event requires an interface that can perform under frequently changing circumstances caused by unpredictable and dangerous conditions. Thus, teleoperation interfaces are under active development to provide both visual and haptic feedback to the fingers. However, studies of teleoperation systems with finger haptic feedback based on force profiles are difficult to conduct because of interface limitations. Therefore, in this paper, we introduce an intuitive teleoperation interface, an anthropomorphic teleoperated robot, and a hand-wearable force-feedback system that provides various feedbacks to the fingers. We combined these systems to compare and evaluated the performance of tactile and kinesthetic finger feedback using two experiments: maintaining appropriate grip force for variably fragile objects and following a force trajectory that changed in real time. Ten subjects participated in the experiments. The results were analyzed using repeated measures analysis of variance. Feedback factors differed significantly. Provision of force feedback to the user’s finger was most effective in both teleoperation experiments.  相似文献   
24.
Implementation of CoWP metal caps into Cu/low-k integration schemes requires a wet stripper that not only gives efficient cleaning but also has good compatibility to CoWP and low-k dielectrics. This paper describes a novel non-fluoride CoWP compatible stripper, developed based on a systematic study of the effect of stripper components, i.e. solvent, corrosion inhibitor, and stripper pH. Electrochemical methods were used to characterize galvanic corrosion of the CoWP/Cu couple and to estimate CoWP etch rate. Our studies showed that a traditional fluoride stripper caused severe damage to CoWP capping layer. The new stripper achieved a good balance between cleaning efficiency and compatibility to CoWP and low-k dielectrics, and demonstrated significant advantages in electrical properties over the traditional fluoride stripper.  相似文献   
25.
In cell–material interactions, cells use filopodia to sense external biochemical and mechanical cues, and subsequently dictate their survival. In an effort toward understanding how disordered topography of stiff materials influences filopodial recognition, diamond films with grain sizes varying from nano‐ to micrometers are fabricated for the investigation of osteoblast filopodial extension. Interestingly, straight filopodia with pronounced cell–substrate adhesion are observed on a nanocrystalline diamond (NCD) region, whereas filopodia on a microcrystalline diamond (MCD) surface only adhere to, and get deflected by, large diamond grains. More importantly, filopodia on NCD keep propagating with a constant velocity, whereas the same process takes place in a slow and intermittent manner on MCD. A theoretical model is also developed and it suggests that the contact between the disordered topography and the filopodial tip plays a key role in altering filopodial growth dynamics. In particular, it is predicted that large surface asperities can block the movement of the filopodial tip, delay its extension, and cause bending of the structure, in quantitative agreement with experimental observations. These findings reveal previously underappreciated effects of random, stiff topographies on the response of cells, and hence can provide new insights for the design of future implant biomaterials.  相似文献   
26.
Promoted by uninterrupted materials and device innovation, organic solar cells have achieved impressive development. However, the complicated intermolecular interactions inside active layers are less understood. Herein, the intermolecular interactions are studied from the dual perspectives of acceptor/acceptor (A/A) and donor/acceptor (D/A), and how these interactions synergistically control the final efficiencies. Three small molecular acceptors (SMAs) are designed with different end-caps, which manipulate the crystallinity and electrostatic potential (ESP) distributions of acceptors, and accordingly, the A/A and D/A intermolecular interactions. The results show that SMA LA17 with low A/A interactions exhibits inferior performance around 12%, owing to its strong D/A interaction with donor PM6, which shapes too miscible morphology and increases charge recombination. Instead, LA16 with strong A/A interactions and moderate D/A interactions delivers improved bulk-heterojunction (BHJ) networks, and therefore, enhances charge transport and diminishes geminate or trap-assisted charge recombination. Consequently, PM6:LA16 records the competitive efficiency of up to 13.74% among the three systems. Therefore, this study deepens the synergistic or balancing effect of the D/A and A/A interactions on BHJ blends for efficient organic solar cells.  相似文献   
27.
A red‐fluorescent conjugated polyelectrolyte (CPE, P2 ) is grafted with dense poly(ethylene glycol) (PEG) chains via click chemistry and subsequently modified with folic acid to form a molecular brush based cellular probe ( P4 ). P4 self‐assembles into a core–shell nanostructure in aqueous medium with an average size of 130 nm measured by laser light scattering. As compared to P2 , P4 possesses not only a substantially higher quantum yield (11%), but also reduced nonspecific interactions with biomolecules in aqueous medium due to the shielding effect of PEG. In conjunction with its high photostability and low cytotoxicity, utilization of P4 as a far‐red/near‐infrared cellular probe allows for effective visualization and discrimination of MCF‐7 cancer cells from NIH‐3T3 normal cells in a high contrast, selective, and nonviral manner. This study thus demonstrates a flexible molecular brush approach to overcome the intrinsic drawbacks of CPEs for advanced bioimaging applications.  相似文献   
28.
Solid-state batteries (SSBs) are regarded as next generation advanced energy storage technology to provide higher safety and energy density. However, a practical application is plagued by large interfacial resistance, owing to solid-solid interface contact between ceramics electrolytes and Li anode. Introducing polymer-based coating between electrolytes and Li anode is a feasible strategy to solve this issue. Unfortunately, current polymer is hard to achieve intimate contact at the atomic scale and lacks of a bridge to transfer Li+ quickly between electrolytes and polymer coating. This gives rise to sluggish Li+ transfer dynamics, huge interface impedance and greatly limits the effectiveness of this strategy. Herein, Poly(lithium 4-styrenesulfonate)(PLSS) is introduced between Li6.5La3Zr1.5Ta0.5O12 (LLZTO) electrolyte and Li anode. The theories and experiments prove the existence of strong coordinating interaction between  SO3Li in PLSS and atoms on LLZTO surface. This interaction structures a bridge to migrate Li+ fast across LLZTO/PLSS interface and hence interface impedance is as low as 9 Ω cm2. Moreover, the electron-blocking feature of PLSS can prevent electrons from tunneling the LLZTO/PLSS interface and combining with Li+ to form dendrite within LLZTO. PLSS-base cells show improved long-life cycling for 4700 h at 0.1 mA cm−2 at room temperature.  相似文献   
29.
30.
Photonic spin-orbit interactions describe the interactions between spin angular momentum and orbital angular momentum of photons, which play essential roles in subwavelength optics. However, the influence of frequency dispersion on photonic angular-momentum coupling is rarely studied. Here, by elaborately designing the contribution of the geometric phase and waveguide propagation phase, the dispersion-enabled symmetry switching of photonic angular-momentum coupling is experimentally demonstrated. This notion may induce many exotic phenomena and be found in enormous applications, such as the spin-Hall effect, optical calculation, and wavelength division multiplexing systems. As a proof-of-concept demonstration, two metadevices, a multi-channel vectorial vortex beam generator and a phase-only hologram, are applied to experimentally display optical double convolution, which may offer additional degrees of freedom to accelerate computing and a miniaturization configuration for optical convolution without collimation operation. These results may provide a new opportunity for complex vector optical field manipulation and calculation, optical information coding, light-matter interaction manipulation, and optical communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号