首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87777篇
  免费   7954篇
  国内免费   3925篇
电工技术   6670篇
技术理论   3篇
综合类   4981篇
化学工业   15859篇
金属工艺   2861篇
机械仪表   4496篇
建筑科学   5880篇
矿业工程   7203篇
能源动力   6301篇
轻工业   5273篇
水利工程   872篇
石油天然气   18738篇
武器工业   799篇
无线电   5019篇
一般工业技术   4985篇
冶金工业   4385篇
原子能技术   973篇
自动化技术   4358篇
  2024年   297篇
  2023年   1087篇
  2022年   2163篇
  2021年   2877篇
  2020年   3064篇
  2019年   2458篇
  2018年   2193篇
  2017年   2479篇
  2016年   3136篇
  2015年   3114篇
  2014年   5692篇
  2013年   5189篇
  2012年   6796篇
  2011年   6931篇
  2010年   4808篇
  2009年   4739篇
  2008年   4032篇
  2007年   5137篇
  2006年   5231篇
  2005年   4451篇
  2004年   3772篇
  2003年   3434篇
  2002年   2895篇
  2001年   2619篇
  2000年   2224篇
  1999年   1782篇
  1998年   1364篇
  1997年   1175篇
  1996年   917篇
  1995年   767篇
  1994年   632篇
  1993年   464篇
  1992年   404篇
  1991年   296篇
  1990年   243篇
  1989年   228篇
  1988年   124篇
  1987年   68篇
  1986年   67篇
  1985年   49篇
  1984年   42篇
  1983年   29篇
  1982年   24篇
  1981年   61篇
  1980年   38篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1973年   6篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
21.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
22.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
23.
为了成功预测竹林山煤矿综放高瓦斯矿井大采高工作面煤层瓦斯涌出量,以主采3号煤层为主要研究对象,针对3号煤层以往开采情况,通过布设测点测量其煤层瓦斯含量和了解相邻矿井瓦斯含量,采用分源预测法、回归法及统计法等预测方法得到了3号煤层瓦斯含量的分布规律,并绘制了3号煤层的瓦斯含量等值线图。对矿井不同生产时期的瓦斯含量进行预测,得到了生产前期、中期及后期采区的最大绝对瓦斯涌出量和最大相对瓦斯涌出量,说明了竹林山煤矿各个时期均属于高瓦斯矿井。  相似文献   
24.
This publication contains the thermodynamic results received by the drop calorimetry method. The experiments were conducted for four different cross sections, at the temperature of 1080 K. The investigated alloys were as follows: (Ga0.75Li0.25)1-xGex, (Ge0.50Li0.50)1-xGax, (Ga0.50Li0.50)1-xGex, (Ga0.25Li0.75)1-xGex. The mixing enthalpy changes measured for all four cross sections of the Ga-Ge-Li system are characterized by negative deviations from the ideal solutions. The Muggianu model with the ternary interaction parameters was applied to elaborate the experimental data of the mixing enthalpy change with the use of the optimized thermodynamic parameters of the binary systems available in the literature.  相似文献   
25.
The synthesis and performance of a novel temperature-tolerant foamed resin for enhanced oil recovery were investigated using various methods, including infrared, NMR, scanning electron microscopy (SEM), and displacement experiments. Polycondensation of furfuryl alcohol prepolymers was confirmed by the infrared and NMR results. The poor temperature tolerance of furfuryl alcohol prepolymers after gelation at high temperatures is mainly due to the fracture of furan rings. The addition of ester additives is an effective method of increasing the temperature tolerance of the prepared foamed resins and can effectively reduce the weight-loss rate of the polycondensation products. The SEM results show that the skeleton structure of the foamed resin remains intact after high-temperature treatment. Thus, the novel plugging agent system has excellent thermal stability and still has a high strength (>0.8 MPa) after high-temperature aging treatment for 40 days, giving the prepared foamed resin a good plugging performance (plugging rate > 91%) at 250 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47161.  相似文献   
26.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
27.
Shale gas, as an important unconventional resource, has drawn global attention. It is mainly composed of adsorption gas and free gas. Adsorption gas content could play an important guiding role on both the selection of favorable perspective area and the exploration and exploitation of shale gas resources. In order to accurately measure adsorption gas content, a new approach was established to predict the adsorption isotherm of methane on shale. Based on the simplified local-density (SLD) method, both the adsorption isotherms of illite, illite/smectite mixed-layer, cholorite and type III kerogen and the total shale rock could be well fitted. The fitting results show good coincidences with the true experimental test data, which proves the method is reasonable and dependable and the prediction results are effective and credible. In addition, the good simulation results show that the SLD parameters can reflect the pore structure characteristics and corresponding adsorption characteristics of the shale samples, which can be used for the quantitative characterization of shale pore system.  相似文献   
28.
《Oil and Energy Trends》2019,44(1):26-28
Current data on natural gas production, as well as a breakdown of production by country. Updated on a monthly basis.  相似文献   
29.
The increase in the production of acid gas consisting of H2S, CO2, and associated impurities such as ammonia and hydrocarbons from oil and gas plants and gasification facilities has stimulated the interest in the development of alternative means of acid gas utilization to produce hydrogen and sulfur, simultaneously. The present literature lacks a detailed reaction mechanism that can reliably predict the thermal destruction of NH3 and its blend with H2S and CO2 to facilitate process optimization and commercialization. In this paper, a detailed mechanism of NH3 pyrolysis is developed and is merged with the reactions of NH3 oxidation and H2S/CO2 thermal decomposition from our previous works. The mechanism is validated successfully using different sets of experimental data on the pyrolysis and oxidation of NH3, H2S, and CO2. The proposed mechanism predicts the experimental data on NH3 pyrolysis remarkably better than the existing mechanisms in the literature. The mechanism is used to investigate the effects of NH3 concentration (0–20%) and reactor temperature (1000–1800 K) on the thermal decomposition of H2S and CO2. A synergistic effect is observed in the simultaneous decomposition of NH3 and CO2, i.e., NH3 conversion is improved in the presence of CO2 and the decomposition CO2 to CO is enhanced in the presence of NH3. The presence of H2S suppressed NH3 conversion, while the conversion of H2S remained unchanged with increasing NH3 concentration at temperature below 1400 K due to the low conversion of NH3 (up to 18%). At temperature above 1400 K, NH3 conversion increased rapidly and it triggered a decrease in H2S conversion as well as the yields of H2 and S2. The major reactions involved in the decomposition of H2S, CO2, and NH3 and the production of major products such as H2, S2, and CO are identified. The detailed reaction mechanism can facilitate the design and optimization of acid gas thermal decomposition to produce hydrogen and sulfur, simultaneously.  相似文献   
30.
杨懿 《石化技术》2020,(2):54-54,333
随着我国石油需求量不断增加,致密油藏的开发也愈发重要。如何高效开发致密油藏是一项重点难点,其中致密油藏注天然气提高采收率是一个极具潜力的研究方向。因此,本文着重介绍以天然气作为能量补充介质在国内外的研究现状和应用现状,并且从两相特征等方面总结了理论研究中的一些机理,对致密油藏注天然气提高采收率的发展前景进行了一定的展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号