首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23389篇
  免费   2087篇
  国内免费   1419篇
电工技术   683篇
技术理论   2篇
综合类   1675篇
化学工业   8886篇
金属工艺   1788篇
机械仪表   745篇
建筑科学   2162篇
矿业工程   323篇
能源动力   595篇
轻工业   1031篇
水利工程   220篇
石油天然气   352篇
武器工业   146篇
无线电   1809篇
一般工业技术   4244篇
冶金工业   702篇
原子能技术   309篇
自动化技术   1223篇
  2024年   72篇
  2023年   489篇
  2022年   650篇
  2021年   922篇
  2020年   788篇
  2019年   801篇
  2018年   758篇
  2017年   930篇
  2016年   768篇
  2015年   818篇
  2014年   1109篇
  2013年   1420篇
  2012年   1427篇
  2011年   1594篇
  2010年   1192篇
  2009年   1340篇
  2008年   1193篇
  2007年   1377篇
  2006年   1261篇
  2005年   1104篇
  2004年   918篇
  2003年   828篇
  2002年   738篇
  2001年   619篇
  2000年   572篇
  1999年   480篇
  1998年   360篇
  1997年   374篇
  1996年   296篇
  1995年   252篇
  1994年   231篇
  1993年   192篇
  1992年   208篇
  1991年   199篇
  1990年   184篇
  1989年   141篇
  1988年   53篇
  1987年   39篇
  1986年   26篇
  1985年   40篇
  1984年   34篇
  1983年   30篇
  1982年   30篇
  1981年   10篇
  1980年   9篇
  1979年   4篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Radiophotoluminescence phenomena have been widely investigated on various types of materials for dosimetry applications. We report that an aluminoborosilicate glass containing 0.005 mol% copper exhibits intense photoluminescence in the visible region induced by X-ray and γ-ray irradiation. The luminescence is assigned to the 3d94s1 → 3d10 transition of Cu+. The proportionality of the intensity of the induced photoluminescence to the irradiation dose was confirmed up to 0.5 kGy using 60Co γ-ray irradiation. Based on the spectroscopic results, a potential mechanism was proposed for the enhancement of the photoluminescence. The exposure to the ionizing radiation generates electron-hole pairs in the glass, and the electrons are subsequently captured by the Cu2+ ions, which are converted to Cu+ and emit the luminescence. For the glass containing 0.01 mol% copper, the pronounced enhancement of the photoluminescence was not observed because the reverse reaction, ie, the capture of the holes by the Cu+ ions, becomes prominent. The photoluminescence induced by the irradiation was stably observed for the glasses kept at room temperature and even for the glasses heat-treated at 150°C. However, the induced photoluminescence could be eliminated by the heat treatment at a temperature at 500°C, and the glass returned to the initial pre-irradiation state. The Cu-doped aluminoborosilicate glass is a potential candidate for use in dosimetry applications.  相似文献   
32.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
33.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
34.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
35.
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.  相似文献   
36.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
37.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   
38.
39.
《Ceramics International》2022,48(8):10420-10427
Precision glass molding (PGM) is a recently developed method to fabricate glass microgroove components. Lead glass is commonly used as an optical material due to its high refractive index and low transition temperature. A nickel-phosphorous (Ni–P) plated mold is traditionally employed in the PGM process for microstructures optics. However, leaded glass is subject to color change and can blacken during the PGM process, reducing the light transmittance of microgrooves. In this paper, an equation for the redox reaction between Ni and Pb is proposed, which is based on the diffusion of inner Ni atoms to the surface of the mold and the standard electrode potential of the Pb ions in leaded glass. A viscoelastic constitutive model of the glass is established to simulate the compression stress distribution during molding. Finally, the effects of molding pressure, molding temperature, and mold material on glass blackening are studied. The results show that the blackening of leaded glass is caused by Pb enriching the surface. The rise in molding stress and temperature increases the deformation of Ni–P plating, which promotes the diffusion of Ni atoms. By adding a titanium incorporated diamond-like carbon (Ti-DLC) coating, the deformation of the Ni–P plating during molding is suppressed, and the diffusion of Ni atoms can be prevented. In this way, the blackening of leaded glass can be prevented.  相似文献   
40.
Sodalime float (SF) glass is widely used in our societies and industries. Hydrothermal corrosion method is one of the effective ways to prepare a superhydrophobic glass, but there is still lack of knowledge about hydrothermal corrosion behavior and mechanism of SF glass. We have hydrothermally treated SF glass at 180 °C for different time, and tried to reveal the aqueous corrosion process of SF glass. We have characterized the morphologies and chemical compositions of samples, and found that (1) the two sides of SF glass have different corrosion resistances, and (2) a multilayer structural coating with a nanoflake layer (Mg-rich gel layer), a nanowire layer (Ca-rich gel layer), and a porous layer (etched layer) is formed on the air-side of SF glass. Based on the experimental results, we have proposed an aqueous corrosion mechanism of SF glass. The insights of the hydrothermal corrosion behaviors and mechanism provide helpful guidelines to glass surface structural control and functionalization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号