全文获取类型
收费全文 | 212篇 |
免费 | 17篇 |
国内免费 | 2篇 |
专业分类
电工技术 | 2篇 |
化学工业 | 142篇 |
机械仪表 | 3篇 |
建筑科学 | 2篇 |
能源动力 | 1篇 |
轻工业 | 71篇 |
石油天然气 | 1篇 |
无线电 | 3篇 |
一般工业技术 | 4篇 |
自动化技术 | 2篇 |
出版年
2024年 | 3篇 |
2023年 | 8篇 |
2022年 | 49篇 |
2021年 | 49篇 |
2020年 | 8篇 |
2019年 | 7篇 |
2018年 | 2篇 |
2017年 | 5篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 7篇 |
2013年 | 4篇 |
2012年 | 5篇 |
2011年 | 5篇 |
2010年 | 5篇 |
2009年 | 2篇 |
2008年 | 5篇 |
2007年 | 11篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 2篇 |
2003年 | 5篇 |
2002年 | 4篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有231条查询结果,搜索用时 31 毫秒
101.
Diabetic polyneuropathy (DPN) is the most common neuropathy manifested in diabetes. Symptoms include allodynia, pain, paralysis, and ulcer formation. There is currently no established radical treatment, although new mechanisms of DPN are being vigorously explored. A pathophysiological feature of DPN is abnormal glucose metabolism induced by chronic hyperglycemia in the peripheral nerves. Particularly, activation of collateral glucose-utilizing pathways such as the polyol pathway, protein kinase C, advanced glycation end-product formation, hexosamine biosynthetic pathway, pentose phosphate pathway, and anaerobic glycolytic pathway are reported to contribute to the onset and progression of DPN. Inhibitors of aldose reductase, a rate-limiting enzyme involved in the polyol pathway, are the only compounds clinically permitted for DPN treatment in Japan, although their efficacies are limited. This may indicate that multiple pathways can contribute to the pathophysiology of DPN. Comprehensive metabolic analysis may help to elucidate global changes in the collateral glucose-utilizing pathways during the development of DPN, and highlight therapeutic targets in these pathways. 相似文献
102.
《合成纤维》2017,(6):23-28
为了寻求低成本、高附加值的再生方法,提出了微醇解与液相增黏结合的方式回收废旧聚酯(PET)纺织品。通过工艺探索及优化,确定了最佳工艺参数为:m[Zn(OAc)2]∶m(EG)∶m(PET)=1∶2.5∶1 000,醇解温度280℃,醇解时间10 min,自由沉降反应器温度275℃、压力4.0×104Pa,圆盘成膜反应器温度280℃、压力100 Pa。制备的再生PET熔体的特性黏度为0.658 d L/g,多分散性系数为2.14。与不经微醇解直接液相增黏的工艺对比,该再生方法使过滤器使用周期延长1.8倍,螺杆的加热和电机功率降低16%,节约了大量的能耗;且能够有效解决液相增黏过程中旋风分离器管道与反应釜之间管道堵塞和蒸汽喷射泵冷凝器易结焦的问题。 相似文献
103.
Medhat S Farahat 《Polymer International》2002,51(2):183-189
The depolymerization of poly(ethylene terephthalate) (PET), by an alcoholysis reaction is an easy operation and gives prospects for the utilization of wastes. PET waste was first depolymerized by glycolysis reaction at three different molar ratios of diethylene glycol (DEG), in the presence of manganese acetate as a transesterification catalyst. Copolyesters of PET modified with varied mole ratios of p‐hydroxybenzoic acid (PHBA) were reported to exhibit excellent mechanical and chemical properties due to their liquid crystalline behaviour. Here we study the effect of incorporating (PHBA) units into the building structures of different unsaturated polyesters synthesized originally from glycolysed PET waste. Modified unsaturated polyesters were synthesized by depolymerizing PET with DEG, and the obtained oligoesters were reacted with PHBA and maleic anhydride (MA). The molar ratio of the added PHBA was varied to investigate its effect on the mechanical characteristics of these modified unsaturated polyesters. The data obtained reveal that increasing the molar ratio of PHBA within the studied range of concentrations leads to a pronounced improvement in the mechanical characteristics, which is represented mainly by the values of/maximum compression strength (σmax) and Young's modulus (EY). © 2002 Society of Chemical Industry 相似文献
104.
Dr. Timothy V. Pyrkov Dr. Irina A. Sevostyanova Dr. Elena V. Schmalhausen Dr. Andrei N. Shkoporov Dr. Andrei A. Vinnik Prof. Vladimir I. Muronetz Prof. Fedor F. Severin Dr. Peter O. Fedichev 《ChemMedChem》2013,8(8):1322-1329
Glycolysis lies at the basis of metabolism and cell energy supply. The disregulation of glycolysis is involved in such pathological processes as cancer proliferation, neurodegenerative diseases, and amplification of ischemic damage. Phosphofructokinase‐2 (PFK‐2), a bifunctional enzyme and regulator of glycolytic flux, has recently emerged as a promising anticancer target. Herein, the computer‐aided design of a new class of aminofurazan‐triazole regulators of PFK‐2 is described along with the results of their in vitro evaluation. The aminofurazan‐triazoles differ from other recently described inhibitors of PFK‐2 and demonstrate the ability to modulate glycolytic flux in rat muscle lysate, producing a twofold decrease by inhibitors and fourfold increase by activators. The most potent compounds in the series were shown to inhibit the kinase activity of the hypoxia‐inducible form of PFK‐2, PFKFB3, as well as proliferation of HeLa, lung adenocarcinoma, colon adenocarcinoma, and breast cancer cells at concentrations in the low micromolar range. 相似文献
105.
随着聚对苯二甲酸乙二醇酯(PET)材料用量的大幅增长,大量废弃PET制品堆积造成的环境污染问题日益突出,其回收利用技术也随之广受关注。在不同的PET回收方法中,将PET降解为单体或低聚物的化学回收是效率最高、产物利用价值最大的方法,但也存在反应条件苛刻、产物收率低等问题。本文详细梳理了水解法、甲醇醇解法、二元醇醇解法、胺解法和氨解法等化学回收方法的主要特点以及微波加热、离子液体、纳米技术等新兴技术在PET化学回收过程中的应用概况。通过对各种化学回收工艺的比较,文中得出二元醇醇解法是最具商业应用价值方法的结论。在此基础上,文中重点介绍了PET的二元醇解以及进一步制备不饱和聚酯树脂的化学过程、发展现状、制约因素和改进措施。分析表明,由PET二元醇解产物制备不饱和聚酯树脂是提高废弃PET资源化效率、丰富原料供给、推动产品升级的重要途径,开发高效、廉价、环保的新型催化剂或酶催化技术是废弃PET回收领域今后主要的发展方向。 相似文献
106.
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined. 相似文献
107.
废弃聚酯化学回收再生利用的方法 总被引:1,自引:0,他引:1
简要介绍了废弃聚酯(PET)化学回收利用方法的发展现状,重点介绍了糖解、醇解、水解等化学回收方法及其优缺点,以及目前商业化的化学回收法———复合降解法工艺,对利用市场需求来推动化学法回收PET的商业化发展进行了展望。 相似文献
108.
Summary: Over the last several decades, the process of recycling polymer waste has been attracting the attention of many scientists working on this issue. Polymer recycling is very important for at least two main reasons: firstly, to reduce the ever increasing volumes of polymer waste coming from many sources: from daily life packaging materials and disposables and secondly, to generate value‐added materials from low cost sources by converting them into valuable materials similar, to some extent, to virgin materials. Poly(ethylene terephthalate) (PET) occupies the top of the list of polymers to be recycled due to its easy recycling by different ways, which, in accordance, give variable products that can be introduced as starting ingredients for the synthesis of many other polymers. PET can by recycled by hydrolysis, acidolysis, alkalolysis, aminolysis, alcoholysis and glycolysis. Glycolysis is the breakdown of the ester linkages by a glycol, resulting in oligomers or oligoester diols/polyols with hydroxyl terminal groups. Oligoesters coming from the glycolysis of PET waste have been well known for a number of decades to be utilized as a starting material in the manufacture of polyurethanes, unsaturated polyesters and saturated polyester plasticizers. But, as a current motivation, we are reporting on a new application for these oligoester diols/polyols by converting the hydroxyl terminals into acrylate/methacrylate groups. These new acrylated/methacrylated oligoesters have been tested as UV curable monomers and gave promising results from the point of view of their curability by UV and their mechanical properties. The new motivations open the potential for the market to apply the depolymerization products of PET waste for UV curable coatings, useful for wood surfaces, paints and other applications.
109.
Recycling of poly(ethyleneterephthalate) waste was achieved through glycolysis using diethyleneglycol (DEG) and poly(ethyleneglycol) (PEG 400), which yielded different fractions that exhibited hydroxyl numbers of 174.41 and 54.86 mg of KOH/g, respectively, whereas GPC profiles revealed bimodality in both cases corresponding to Mn values equivalent to 534 and 1648. The products of glycolysis from both cases were individually incorporated as modifiers during the synthesis of urea‐formaldehyde resins from both the basic as well as acidic stages, respectively. It was found that the free formaldehyde level was remarkably decreased for the modified resins while the gel time was slightly affected indicating some activation of the resins. In addition, the adhesion strength of wood joints bonded with the modified resins improved markedly in the dry state while the moisture resistance was significantly fortified with respect to the comparable joints formulated from unmodified resins where instant failure took place within few hours after immersion in water. The shelf life of the resins did not prolong and lasted maximum for about 2 months which was ascribed to the presence of reasonable amount of carboxyl terminal groups at the ends of a minor portion of the glycolyzed products that could actively act to self‐catalyze the polycondensation and crosslinking reactions during storage leading eventually to vitrification of the resin and shortening of shelf life. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
110.
Salvatore Passarella Avital Schurr Piero Portincasa 《International journal of molecular sciences》2021,22(23)
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment. 相似文献