首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   4篇
  国内免费   5篇
综合类   6篇
化学工业   28篇
金属工艺   14篇
机械仪表   3篇
能源动力   4篇
轻工业   2篇
无线电   8篇
一般工业技术   17篇
冶金工业   2篇
  2024年   2篇
  2023年   8篇
  2022年   6篇
  2021年   12篇
  2020年   7篇
  2019年   6篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有84条查询结果,搜索用时 63 毫秒
31.
针对超细h-BN粉体易团聚、与有机基体界面相容性较差的缺点,研究了其在无水乙醇介质中的分散工艺.首先在测定其pH-Zeta电位的基础上,选取阴离子型(SA、OA、SDBS)、非离子型(PVP、KH570、司班85)和高分子型(PEG4000)分散剂进行超声分散研究.然后从以上几种分散剂中选取三种分散剂进行复合分散.实验发现:在最佳配比下,复合分散体系较单分散剂分散效果明显提升,PEG4000与SA的复合分散比最佳单分散剂的效果提升了18%;KH570与SA的复合分散体系比最佳单分散剂的效果提升了11%;推荐h-BN粉在无水乙醇中的分散工艺为:pH值为9时,在560 W的功率下用SA(4wt%)与PEG4000(1wt%)或者SA(1wt%)与KH570(4wt%)复合超声90 min.  相似文献   
32.
NiCrAlYSi/h-BN高温可磨耗封严涂层摩擦磨损性能研究   总被引:1,自引:1,他引:1       下载免费PDF全文
运广涛  李其连  程旭东 《表面技术》2016,45(2):103-108,174
目的加入h-BN和团聚聚苯酯分别作为固体润滑剂和造孔剂,以提高NiCrAlYSi基封严涂层的高温摩擦磨损性能。方法采用真空熔炼雾化造粒和料浆喷雾造粒技术制备NiCrAlYSi/h-BN聚苯酯复合粉体,再利用大气等离子喷涂技术制备高温可磨耗封严涂层,通过扫描电子显微镜(SEM)、能谱仪(EDS)、CSM摩擦磨损试验机和三维轮廓仪等手段,研究NiCrAlYSi/h-BN封严涂层显微结构、元素组成以及室温和800℃下的摩擦磨损性能,探究涂层在室温和800℃下的磨损机理。结果等离子喷涂NiCrAlYSi/h-BN封严涂层组织比较均匀,涂层结合强度可达15MPa,孔隙率约为32%。室温下封严涂层与DD6镍基单晶高温合金球间的平均摩擦因数为0.897,涂层磨损体积为2.09×10~8μm~3;800℃高温下平均摩擦因数为0.425,涂层磨损体积为3.22×10~8μm~3;封严涂层800℃下有良好的可磨耗性,相应对偶件的磨损较轻;高温下,封严涂层金属基相软化、h-BN的润滑作用和部分金属基相高温下生成自润滑性氧化物,是摩擦因数降低和对偶件磨损较轻的主要原因。NiCrAlYSi/h-BN封严涂层室温的主要磨损机理为涂抹、磨粒磨损和轻微氧化,高温下的主要磨损机理为切削、塑性变形、氧化和粘着磨损。结论等离子喷涂NiCrAlYSi/h-BN高温封严涂层在高温下的可磨耗性能较好。  相似文献   
33.
Hexagonal boron nitride (h-BN) is a new type of anti-corrosion coating. However, a large number of studies have shown that defects can significantly reduce the barrier property of h-BN. So how to repair the defect of h-BN is a problem to be solved. In this study, we used the density functional theory of the first principle to calculate the barrier properties of perfect h-BN and the h-BN with various vacancies. The study showed that monolayer h-BN has impermeability to all gas molecules, and vacancies can greatly reduce the barrier ability of h-BN to oxygen molecules. Fortunately, atomic oxygen can block the vacancy site of h-BN by chemical adsorption, thereby reducing the impact of vacancies on h-BN. Compared to the situation before the vacancy repaired, the barrier ability of h-BN to oxygen molecules was greatly increased after being repaired. In addition, the electron cloud density at vacancies after the repair (with) atomic oxygen was also greatly increased. Therefore, atomic oxygen can repair vacancies of h-BN and enhance the barrier ability of the defective h-BN. The research in this paper is of some significance. It is helpful to repair h-BN and evaluate corrosion resistance of h-BN in oxygen-rich or atomic-oxygen-rich environment.  相似文献   
34.
《Ceramics International》2022,48(7):9099-9106
The h-BN ceramic with two-dimensional laminar structure is an important constituent material of Hall thruster channel, and the differences in its chemical bonding structures lead to anisotropy of BN grains in different orientations. In this paper, h-BN matrix textured ceramics are prepared by hot-press sintering. Xe plasma is used to etch the textured ceramics with different preparation processes and orientations. The effects of microstructure and h-BN grain orientation on plasma etching resistance of the materials are investigated. The results show that the intergranular phase has superior plasma etching resistance compared to the h-BN material. During the etching, the sample surface maintains dynamic equilibrium on the macroscopic scale, while preferential etching exists on the microscopic scale. The h-BN grains exhibit point etching, line etching and composite etching behavior during the etching process. The etching resistance of textured ceramics is related to the intrinsic plasma etching resistance of the matrix material, but less correlation to the preparation process, microstructure, and orientation of the BN grains of the matrix material, moreover, there is no anisotropic etching behavior.  相似文献   
35.
Cu-based P/M friction composites containing graphite at weight fractions in the range of 0%, 2%, 5%, 8%, 10%, corresponding to the hexagonal boron nitride (h-BN) at weight fractions in the range of 10%, 8%, 5%, 2%, 0%, were fabricated by a P/M hot press method, respectively. The effects of graphite and h-BN on tribological properties of Cu-based P/M friction composites were investigated on a block-on-ring tester. Worn surfaces, microstructures and wear debris of the composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results indicate that lubrication effects of graphite are superior to those of h-BN. With the increase of graphite content wear rates were decreased significantly. Added graphite with low contents of h-BN can stabilize friction and wear properties of Cu-based P/M friction composites.  相似文献   
36.
A low-density carbon/carbon (C/C) composite/silane coupling agent/hexagonal boron nitride (h-BN) hybrid reinforcement was prepared by grafting polyethyleneimine (PEI)-encapsulated modified h-BN fillers onto a carbon fiber surface using 3-aminopropyltriethoxysilane (APS) as the connection to improve the distribution uniformity of h-BN fillers in quasi-three-dimensional reinforcements and the interfacial properties between the fibers/pyrocarbon (PyC) in the C/C-BN composites obtained after densification by chemical vapor infiltration (CVI). The microstructure and chemical components of the hybrid reinforcement were investigated. The transmission electron microscopy (TEM) sample was prepared using a focused-ion beam (FIB) for the h-BN/PyC interfacial zone. The interlaminar shear strength (ILSS) and impact toughness were analyzed to inspect the composites’ interfacial properties. The results show that APS and h-BN are uniformly grafted on the fiber surface in the chopped fiber web inside the C/C composite without a density gradient, and agglomeration occurred and significantly increasing the fiber surface roughness. The highly ordered h-BN basal plane may affect the order degree of PyC near the h-BN/PyC interface. The addition of h-BN reduces the PyC texture near it, causing the annular cracks to disappear gradually. The lower PyC texture and the rougher fiber surface strengthen the interfacial bond of the fiber/matrix. Consequently, the ILSS strength of the C/C-BN composites first increases and then decreases as the h-BN filler content increases and is always higher than that of the C/C composite, while the addition of h-BN fillers weakens its impact toughness. When the h-BN content in the C/C-BN composite is 10 vol%, the ILSS of the C/C-BN composites was 15.6% higher than that of the C/C composites. However, when the h-BN content is excessive (15 vol%), the densely grafted h-BN will bridge each other, reducing the subsequent CVI densification efficiency to form a loose interface, causing a decrease in the shear strength.  相似文献   
37.
采用射频(RF)磁控溅射的方法,通过改变工艺参数在n型Si(100)片上制备六方氮化硼(h-BN)薄膜。通过傅立叶红外(FTIR)光谱仪,X射线衍射(XRD)仪进行结构表征,原子力显微镜(AFM)进行表面形貌和压电性能表征。测试结果表明,在射频功率为300 W、衬底温度为500℃、工作压强在0.8Pa、N2与Ar流量比为4∶20和衬底偏压在-200V时制备的六方BN薄膜具有高纯度、高c-轴择优取向,颗粒均匀致密,粗糙度为2.26nm,具有压电性并且压电响应均匀,符合高频声表面波器件基片高声速、优压电性要求。薄膜压电性测试研究表明,AFM的PFM测试方法适用于纳米结构半导体薄膜的压电性及其压电响应分布特性的表征。  相似文献   
38.
张静娴  阳运华  郑明涛  刘应亮 《功能材料》2012,43(16):2135-2137
以氟硼酸盐和氨基钠为反应原料,氨基钠或金属钠为生长介质,在600℃下恒温反应24h,成功制备出了三角形和六边形片状氮化硼微晶。XRD、FT-IR和XPS分析表明,产物为六方氮化硼,无其它物相存在。FESEM和TEM分析发现在氨基钠熔体中产物为三角形片晶,而在氨基钠和钠混合熔体中得到的是六边形的氮化硼片晶。三角形片晶边长约400~500nm,厚度约为100nm;六边形片晶的边长在300~500nm范围内,厚度约100~150nm。研究结果表明,NaNH2不仅能作为氮源,同时也是氮化硼晶体生长的介质。  相似文献   
39.
A new design method of machinable ceramic composites was proposed, which applies the graded-structure concept to the design of machinable Si3N4 ceramics. Silicon nitride/hexagonal boron nitride (h-BN) ceramic composites and functionally graded materials were fabricated by hot pressing at 1750 °C for 2 h, varying the alignment of the amount of hexagonal BN using powder layering method. The improved machinability of Si3N4/h-BN composite can be attributed to addition of layered structure hexagonal BN. Hexagonal BN possesses excellent cleavage planes perpendicular to the c-axis. Ease of machining depends on degree of crystal interlocking; hence volume content of h-BN crystals and their aspect ratio affect machinability. The texture of h-BN and β-Si3N4 was observed during hot pressing sintering. Physical and mechanical properties of Si3N4/h-BN with different content of h-BN were investigated, such as bulk density, Vickers's hardness, flexural strength, and elastic modulus. All of these properties are important for the design of the machinable Si3N4/h-BN FGM (Functionally Graded Materials).  相似文献   
40.
The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号