首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122754篇
  免费   12882篇
  国内免费   6988篇
电工技术   10925篇
技术理论   6篇
综合类   9407篇
化学工业   18777篇
金属工艺   11891篇
机械仪表   6939篇
建筑科学   11665篇
矿业工程   4830篇
能源动力   5372篇
轻工业   9803篇
水利工程   3334篇
石油天然气   6869篇
武器工业   1267篇
无线电   11818篇
一般工业技术   12457篇
冶金工业   8770篇
原子能技术   1827篇
自动化技术   6667篇
  2024年   501篇
  2023年   1722篇
  2022年   3298篇
  2021年   4058篇
  2020年   4298篇
  2019年   3621篇
  2018年   3403篇
  2017年   4316篇
  2016年   4710篇
  2015年   4888篇
  2014年   7647篇
  2013年   7211篇
  2012年   9261篇
  2011年   9601篇
  2010年   6726篇
  2009年   7046篇
  2008年   6282篇
  2007年   8146篇
  2006年   7451篇
  2005年   6164篇
  2004年   5310篇
  2003年   4653篇
  2002年   4002篇
  2001年   3547篇
  2000年   2904篇
  1999年   2383篇
  1998年   1806篇
  1997年   1451篇
  1996年   1309篇
  1995年   993篇
  1994年   845篇
  1993年   583篇
  1992年   513篇
  1991年   436篇
  1990年   346篇
  1989年   249篇
  1988年   183篇
  1987年   125篇
  1986年   105篇
  1985年   107篇
  1984年   86篇
  1983年   64篇
  1982年   50篇
  1981年   36篇
  1980年   45篇
  1979年   19篇
  1975年   10篇
  1964年   10篇
  1959年   21篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
41.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
42.
This paper reviews recent studies, that not only includes both experiments and modeling components, but celebrates a close coupling between these techniques, in order to provide insights into the plasticity and failure of polycrystalline metals. Examples are provided of studies across multiple-scales, including, but not limited to, density functional theory combined with atom probe tomography, molecular dynamics combined with in situ transmission electron miscopy, discrete dislocation dynamics combined with nanopillars experiments, crystal plasticity combined with digital image correlation, and crystal plasticity combined with in situ high energy X-ray diffraction. The close synergy between in situ experiments and modeling provides new opportunities for model calibration, verification, and validation, by providing direct means of comparison, thus removing aspects of epistemic uncertainty in the approach. Further, data fusion between in situ experimental and model-based data, along with data driven approaches, provides a paradigm shift for determining the emergent behavior of deformation and failure, which is the foundation that underpins the mechanical behavior of polycrystalline materials.  相似文献   
43.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   
44.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
45.
It is important to take contact temperatures into account when developing friction and wear tests for potential tribomaterials and when analyzing the results of those tests. This paper presents some of the most useful analytical and numerical methods that can be used to predict surface temperature rises in dry or boundary lubricated pin-on-disk tribotests. The objective is the development of relatively simple, accurate, and easy-to-use expressions that can be used to predict contact temperatures in pin-on-disk sliding contacts. Results of the methods are compared for several different cases, and experimental verification of the predictions are also presented. The resulting expressions are applied to investigate wear of a ceramic (zirconia), metal (stainless steel) and polymer (polyethylene) in pin-on-disk tests.  相似文献   
46.
This paper discusses the compressive performance of perforated brick masonry after fire exposure. Compressive strength tests of the mortar, clay perforated brick, and perforated brick masonry specimens were performed in accordance with ISO834 fire tests of different durations. The temperature distribution of the masonry materials and specimens was simulated using the finite element software ABAQUS, with the thermal parameters of masonry materials recommended by European standard Eurocode 6 and related literature. The compressive strength reduction factors of mortar and clay perforated brick exposed to different fire durations were calculated via the layered method suggested by European standard Eurocode 1. In addition, the compressive strength reduction factors after cooldown were obtained from the experimental data of the masonry materials, and by considering further reductions in the compressive strength after cooling from high temperatures. Experimental data of the masonry specimens were compared with the numerical results obtained using the reduction factors proposed in this work. The comparison revealed an overall acceptable approximation. Thus, the method presented in this paper can be used to evaluate the residual capacity of masonry structures after fire.  相似文献   
47.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
48.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   
49.
50.
Low temperature co-fired ceramic (LTCC) micro-hotplates show wide applications in gas sensors and micro-fluidic devices. It is easily structured in three-dimensional structures. This paper presents the low power consumption micro-hotplates which were developed with PTC (positive temperature coefficient) temperature sensor and inter-digitated electrodes. The paper presents two different structures for micro-hotplate with platinum as a heating element. The PTC temperature sensor using two different materials viz. PdAg and platinum paste are developed with micro-hotplates. The simulation has been achieved through COMSOL for LTCC and alumina micro-hotplates. The temperature variation with power consumption has been measured for the developed LTCC micro-hotplates. The change in resistance of PTC temperature sensors was measured with micro-hotplate temperature. The aim of this study was to place a temperature sensor with the gas sensor module to measure and control the temperature of micro-hotplate. A SnO2 sensing layer is coated on LTCC micro-hotplate using screen printing and characterized for the sensing of carbon monoxide gas (CO). This study will be beneficial for designing hotplates based on LTCC technology with low power consumption and better stability of temperature for gas-sensing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号