Chemical Composition and Microstructure of Polymer‐Derived Glasses and Ceramics in the Si–C–O System. Part 2: Characterization of microstructure formation by means of high‐resolution transmission electron microscopy and selected area diffraction Liquid or solid silicone resins represent the economically most interesting class of organic precursors for the pyrolytic production of glass and ceramics materials on silicon basis. As dense, dimensionally stable components can be cost‐effectively achieved by admixing reactive filler powders, chemical composition and microstructure development of the polymer‐derived residues must be exactly known during thermal decomposition. Thus, in the present work, glasses and ceramics produced by pyrolysis of the model precursor polymethylsiloxane at temperatures from 525 to 1550 °C are investigated. In part 1, by means of analytical electron microscopy, the bonding state of silicon was determined on a nanometre scale and the phase separation of the metastable Si–C–O matrix into SiO2, C and SiC was proved. The in‐situ crystallization could be considerably accelerated by adding fine‐grained powder of inert fillers, such as Al2O3 or SiC, which permits effective process control. In part 2, the microstructure is characterized by high‐resolution transmission electron microscopy and selected area diffraction. Turbostratic carbon and cubic β‐SiC precipitate as crystallization products. Theses phases are embedded in an amorphous matrix. Inert fillers reduce the crystallization temperature by several hundred °C. In this case, the polymer‐derived Si–C–O material acts as a binding agent between the powder particles. Reaction layer formation does not occur. On the investigated pyrolysis conditions, no crystallization of SiO2 was observed. 相似文献
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献