首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82062篇
  免费   25926篇
  国内免费   1696篇
电工技术   5538篇
技术理论   2篇
综合类   1874篇
化学工业   31117篇
金属工艺   3187篇
机械仪表   3249篇
建筑科学   3258篇
矿业工程   184篇
能源动力   2724篇
轻工业   7980篇
水利工程   549篇
石油天然气   246篇
武器工业   246篇
无线电   11250篇
一般工业技术   25994篇
冶金工业   1248篇
原子能技术   161篇
自动化技术   10877篇
  2024年   181篇
  2023年   772篇
  2022年   986篇
  2021年   1825篇
  2020年   4162篇
  2019年   6746篇
  2018年   6197篇
  2017年   6863篇
  2016年   6884篇
  2015年   6980篇
  2014年   6941篇
  2013年   7429篇
  2012年   6427篇
  2011年   6236篇
  2010年   5052篇
  2009年   4606篇
  2008年   4378篇
  2007年   4414篇
  2006年   4036篇
  2005年   3328篇
  2004年   2937篇
  2003年   2747篇
  2002年   2510篇
  2001年   2080篇
  2000年   1843篇
  1999年   1179篇
  1998年   366篇
  1997年   322篇
  1996年   241篇
  1995年   205篇
  1994年   174篇
  1993年   118篇
  1992年   106篇
  1991年   108篇
  1990年   111篇
  1989年   89篇
  1988年   20篇
  1987年   11篇
  1986年   14篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   3篇
  1980年   7篇
  1978年   4篇
  1975年   1篇
  1964年   1篇
  1959年   1篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
42.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
43.
Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs: an AGE receptor‐dependent way to stimulate cell signals, and an AGE receptor‐independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health‐hazardous dAGEs. To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised: molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat‐processed foods.  相似文献   
44.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
45.
The intermittent wind power in isolated hybrid distributed generation (IHDG) may cause serious problems associated with frequency (f) and power (P) fluctuation. Energy storage devices such as battery, super capacitor, and superconducting magnetic energy storage (SMES) may be used to reduce these fluctuations associated with f and P. This paper presents a study of IHDG power system for improving both f and P deviation profiles with the help of SMES. The studied IHDG power system is consisted of wind turbine generator and diesel engine generator. Both f and P control problems of the studied power system model are addressed in presence or absence of SMES. Fuzzy logic based proportional–integral–derivative (PID) controller with SMES is used for the purpose of minimization of f and P deviations. The different tunable parameters of the PID controller and those of the SMES are tuned by a novel quasi-oppositional harmony search algorithm. Performance study of the IHDG power system model is carried out under different perturbation conditions. The results demonstrate minimum f and P deviations may be achieved by using the proposed fuzzy logic based PID controller along with SMES.  相似文献   
46.
In this work, the effect of ZrB2 (0, 5, 10 and 20?vol%) ceramic reinforcement on densification, structure, and properties of mechanically alloyed Al was investigated. The milling of Al-ZrB2 powder compositions resulted in formation of agglomerates with varied size. In particular, the size of agglomerates was reduced considerably with increased addition of ZrB2 to Al. Interestingly, the densification of hot pressed Al increased from 96.06% to 99.22% with ZrB2 addition. The reduction of agglomerates size was attributed to the enhanced densification of Al-ZrB2 composites. Pure Al showed relatively low hardness (0.94?GPa) and it was improved to 1.78?GPa with the addition of 20?vol% ZrB2. The mechanical properties have significantly been improved for Al-ZrB2 composites. Especially Al - 20?vol% ZrB2 possessed a very high yield strength (529?MPa), compressive strength (630?MPa) and compressive strain of 19.25%. Realization of such a good combination of mechanical properties is the highest ever reported for Al composites so far in the literature. The coefficient of friction (COF) of Al-ZrB2 varied narrowly between 0.33 and 0.40 after dry sliding wear against steel disc. The wear rate of Al-ZrB2 composites was within mild wear regime and varied between 98.88?×?10?6 and 34.66?×?10?6 mm3/Nm. Among all the compositions, Al - 20?vol% ZrB2 composite exhibited the lowest wear rate and high wear rate was noted for pure Al. Mild abrasion, tribo-oxidation, third body wear (wear debris) and delamination were the major material removal mechanisms for Al-ZrB2 composites. Overall the hardness, strength and wear resistance of Al - 20?vol% ZrB2 composite was improved by 84.3%, 84.3% and 64.2%, respectively when compared to pure Al.  相似文献   
47.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
48.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
49.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
50.
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号