首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   16篇
  国内免费   5篇
电工技术   10篇
综合类   17篇
化学工业   255篇
金属工艺   1篇
机械仪表   2篇
矿业工程   3篇
能源动力   22篇
轻工业   2篇
石油天然气   3篇
无线电   9篇
一般工业技术   36篇
冶金工业   2篇
原子能技术   1篇
  2024年   3篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   12篇
  2012年   22篇
  2011年   22篇
  2010年   24篇
  2009年   20篇
  2008年   12篇
  2007年   29篇
  2006年   24篇
  2005年   17篇
  2004年   17篇
  2003年   15篇
  2002年   14篇
  2001年   18篇
  2000年   18篇
  1999年   13篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1959年   1篇
排序方式: 共有363条查询结果,搜索用时 62 毫秒
71.
Novel aromatic poly(amide imide)s (m‐PAIs, m = 8, 12, 16) containing preformed isophthalamide unit and pendent n‐alkyloxy (‐O‐n‐CmH2m+1, m = 8, 12, 16) side chains were prepared in thin films by polymerization of pyromellitic dianhydride (PMDA) with N,N′‐bis(4‐aminophenyl)‐5‐(n‐alkyloxy)isophthalamides (m‐DAs) obtained from N,N′‐bis(4‐nitrophenyl)‐5‐(n‐alkyloxy)isophthalamides (m‐DNs). The m‐PAI films were tough, flexible and transparent with inherent viscosities in the 1.25–1.67 dL/g range in DMAc and soluble in DMAc and NMP on heating. In TGA m‐PAIs began to degrade around 440°C and in DSC no phase transitions were detected. In X‐ray diffractometry the m‐PAIs appeared amorphous with loosely developed layered crystalline structure. In liquid crystal (LC)‐aligning performance measured using 4‐n‐pentyl‐4′‐cyanobiphenyl (5CB) on thin film surfaces rubbed with standard velvet fibers, the m‐PAIs showed homogeneous LC alignment parallel to the rubbing direction with 2.5–17.5° pretilt angles, depending on the rubbing density and n‐alkyloxy side chain length. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
72.
S. Adia  R. Butler  G.C. Eastmond 《Polymer》2006,47(8):2612-2628
A series of new 3- and 4-ring bis(2-aminophenoxy) aromatic diamines were prepared. These, and corresponding, conventional bis(4-aminophenoxy) diamines were reacted with several aromatic bis(ether anhydride)s to form poly(ether imide)s. The diamines with 4-aminophenoxy groups gave high-molecular-weight polymers that were cast into films with good mechanical properties. In contrast, in almost all cases, diamines with 2-aminophenoxy groups only gave low-molecular-weight powdery products that could not be cast into coherent films. The low-molecular-weight products, prepared from stoichiometrically equal amounts of monomers, were examined by mass spectrometry and shown, in most cases, to consist primarily of cyclic oligomers; traces of linear oligomers were identified in some samples. Apart from a polyimide prepared from pyromellitic dianhydride and 4,4′-bis(2″-aminophenoxy)biphenyl, the only products found to contain significant proportions of linear oligomers were those prepared with a stoichiometric imbalance of monomers. End groups of the various linear oligomers were identified. The 2-aminophenoxy groups predispose the oligomers to cyclize as amic acids, and to remain as cyclics on imidization. In some cases [1+1] cyclic oligomers were observed although the most common species were the [2+2] cyclic dimers.  相似文献   
73.
Three diimide‐diacids, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane ( I‐A ), 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]propane ( I‐B ), and 5,5′‐bis[4‐ (4‐trimellitimidophenoxy)phenyl]hexahydro‐4,7‐methanoindan ( I‐C ), were prepared by the azeotropic condensation of trimellitic anhydride with three analogous diamines. Three series of alternating aromatic poly(arylate‐imide)s, having inherent viscosities of 0.41–0.82 dL/g, were synthesized from these diimide‐diacids ( I‐A , I‐B , and I‐C ) with various bisphenols by direct polycondensation using diphenyl chlorophosphate and pyridine as condensing agents. All of the polymers were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and even in the less polar tetrahydrofuran. These polymers could be cast into transparent and tough films, which had strength at break values ranging from 73 to 98 MPa, elongation at break from 6 to 11%, and initial modulus from 1.6 to 2.2 GPa. The softening temperatures of the polymers were recorded at 145–248°C. They had 10% weight loss at a temperature above 450°C and left 35–51% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3818–3825, 2003  相似文献   
74.
Aromatic poly(amide‐imide)s (PAIs) are high‐performance materials with a good compromise between thermal stability and processability when compared with polyamides or polyimides of analogous structures. In addition, the incorporation of photosensitive functional groups and chiral segments into the polymer backbone can lead to interesting polymers for various applications. In this work, six new photosensitive and chiral PAIs were synthesized from the direct polycondensation reaction of novel N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L ‐amino acids with 2,5‐bis(4‐aminobenzylidene)cyclopentanone as dibenzalacetone moiety using two different methods. The polymerization reactions produced a series of photosensitive and optically active PAIs in high yields and with good inherent viscosities. The resulting polymers were characterized using Fourier transform infrared and 1H NMR spectroscopy, elemental analysis, inherent viscosity, specific rotation, solubility tests and UV‐visible spectroscopy. The thermal properties of the PAIs were investigated using thermogravimetric analysis. Due to the presence of the dibenzalacetone moiety in the polymer chain, the PAIs have photosensitive properties. Also, these PAIs are optically active and soluble in various organic solvents. These resulting new polymers have the potential to be used in column chromatography for the separation of enantiomeric mixtures. Copyright © 2009 Society of Chemical Industry  相似文献   
75.
In order to improve the heat‐resistant property of polyurethane foams, a series of polyurethane‐imide foams (PUIFs) with different contents of the imide group were fabricated via the prepolymer foaming method. It was found that the PUIFs showed a closed cellular structure with almost circular cell shapes. With increasing content of imide groups, the cell wall thickness and apparent density of the foams gradually increased, and the cell size showed a trend of first increasing and then decreasing. All foams exhibited a multistage deformation response when subjected to compressive loading, and the compressive strength and modulus of the PUIFs were significantly improved by incorporation of the imide group, increasing by roughly 5500% and 6400% for the PUIF with 34.25 wt% imide groups, indicating the remarkable reinforcing effect of the imide group on the PUIF. TGA and dynamic mechanical analysis showed that with increase of the imide group content the thermal degradation temperatures, the char yield and the degradation activation energy for the PUIFs sharply increased, while the storage modulus (G′) and Tg were obviously improved, reaching 575 MPa and 283 °C respectively, much higher than that of most reported PU foams, indicating the remarkable enhancement of the thermal mechanical stability of the PUIF. The heat insulation of the PUI system was also enhanced by the incorporation of imide groups. Such PUIFs showed potential applications for use in high temperature environments. © 2018 Society of Chemical Industry  相似文献   
76.
Poly(ester imide)s, prepared by the reaction of phthalic anhydride, N‐(4‐carboxyphenyl) trimellitimide and 1,2‐ethanediol, were used to improve the toughness of bisphenol‐A diglycidyl ether epoxy resin cured with 4,4′‐diaminodiphenyl sulfone (DDS). The poly(ester imide)s include poly(ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene) trimellitimide dicarboxylate)s (PESIs) having 10, 20 and 30 mol% trimellitimide (TI) units, respectively. PESIs having 10 and 20 mol% TI units were effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt% of PESI (20 mol% TI unit, M W 19300 g mol?1) led to a 55% increase in the fracture toughness (KIC) of the cured resin (with an increase in flexural strength and modulus) and the modified resin had a particulate morphology. PESI having 30 mol% TI units was not effective because of degradation of the modifier by DDS. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviour of the modified epoxy resin system. © 2001 Society of Chemical Industry  相似文献   
77.
A new siloxane‐imide‐containing benzoxazine, BZ‐A6, has been successfully synthesized. The thermal properties of the polybenzoxazine (PBZ) prepared from BZ‐A6 (PBZ‐A6) are superior to those of conventional PBZs lacking siloxane groups. The normally brittle PBZs are toughened significantly as a result of adding siloxane‐imide moieties. Moreover, the thermal and UV stabilities of the surface free energy of PBZ‐A6 are dramatically improved over the conventional bisphenol‐A‐type PBZ. Siloxane‐imide PBZs are more suitable for application as low‐surface‐free‐energy materials that are highly resistant to temperature and UV radiation. PBZ‐A6 may also be useful in weather‐resistant and self‐cleaning coating materials because of its low surface free energy and good thermal and UV resistance. Copyright © 2011 Society of Chemical Industry  相似文献   
78.
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR13FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.  相似文献   
79.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   
80.
A new diamine, 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐diaminodiphenyl ether (FPAPE) was synthesized through the Suzuki coupling reaction of 2,2′‐diiodo‐4,4′‐dinitrodiphenyl ether with 3,4,5‐trifluorophenylboronic acid to produce 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐dinitrodiphenyl ether (FPNPE), followed by palladium‐catalyzed hydrazine reduction of FPNPE. FPAPE was then utilized to prepare a novel class of highly fluorinated all‐aromatic poly(ether‐imide)s. The chemical structure of the resulting polymers is well confirmed by infrared and nuclear magnetic resonance spectroscopic methods. Limiting viscosity numbers of the polymer solutions at 25 °C were measured through the extrapolation of the concentrations used to zero. Mn and Mw of these polymers were about 10 000 and 25 000 g mol?1, respectively. The polymers showed a good film‐forming ability, and some characteristics of their thin films including color and flexibility were investigated qualitatively. An excellent solubility in polar organic solvents was observed. X‐ray diffraction measurements showed that the fluoro‐containing polymers have a nearly amorphous nature. The resulting polymers had Tg values higher than 340 °C and were thermally stable, with 10% weight loss temperatures being recorded above 550 °C. Based on the results obtained, FPAPE can be considered as a promising design to prepare the related high performance polymeric materials. Copyright © 2011 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号