首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29609篇
  免费   3009篇
  国内免费   902篇
电工技术   730篇
技术理论   1篇
综合类   1265篇
化学工业   8555篇
金属工艺   602篇
机械仪表   760篇
建筑科学   1275篇
矿业工程   253篇
能源动力   3549篇
轻工业   6695篇
水利工程   181篇
石油天然气   586篇
武器工业   102篇
无线电   3273篇
一般工业技术   4322篇
冶金工业   359篇
原子能技术   264篇
自动化技术   748篇
  2024年   99篇
  2023年   756篇
  2022年   1656篇
  2021年   1985篇
  2020年   1288篇
  2019年   1086篇
  2018年   1061篇
  2017年   1285篇
  2016年   1251篇
  2015年   1278篇
  2014年   1788篇
  2013年   1862篇
  2012年   2078篇
  2011年   2475篇
  2010年   1652篇
  2009年   1568篇
  2008年   1331篇
  2007年   1550篇
  2006年   1237篇
  2005年   1012篇
  2004年   782篇
  2003年   712篇
  2002年   643篇
  2001年   510篇
  2000年   398篇
  1999年   307篇
  1998年   323篇
  1997年   244篇
  1996年   194篇
  1995年   159篇
  1994年   159篇
  1993年   106篇
  1992年   105篇
  1991年   113篇
  1990年   78篇
  1989年   57篇
  1988年   42篇
  1987年   33篇
  1986年   28篇
  1985年   32篇
  1984年   20篇
  1983年   18篇
  1982年   17篇
  1981年   16篇
  1980年   26篇
  1977年   16篇
  1976年   12篇
  1975年   17篇
  1974年   10篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
阐述了恒模算法(CMA)、修正恒模算法(MCMA)和判决引导(DD)算法的基本原理。针对CMA和MCMA收敛速度慢,固定步长条件下收敛速度和剩余误差之间存在矛盾的缺陷,在分析CMA误差特性的基础上,利用DD算法误差函数的模值和判决器输出构造新的误差函数,提出了一种新的变步长MCMA。新算法在加快收敛速度的同时保持小的剩余误差。仿真结果表明,新算法比CMA和MCMA收敛速度快,均衡输出剩余码间干扰(ISI)小而且能克服相位偏移,具有很好的实用性。  相似文献   
62.
The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients’ management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.  相似文献   
63.
Tumor-infiltrating immune cells phenotype is associated with tumor progression. However, little is known about the phenotype of the peripheral blood mononuclear cells (PBMC) from breast cancer patients. We investigated MMP1 and MMP11 expression in PBMC from breast cancer patients and we analyzed gene expression changes upon their interaction with cancer cells and cancer-associated fibroblasts (CAF). We measured the impact of PBMC on proinflammatory gene expression in breast cancer cells, normal fibroblast (NF), and CAF and the impact on proliferation and invasiveness capacity of breast cancer cells. Gene expression of MMP1 and MMP11 in PBMC from breast cancer patients (n = 54) and control (n = 28); expression of IL1A, IL6, IL17, IFNβ, and NFĸB in breast cancer cell lines (MCF-7 and MDA-MB-231); and, additionally, IL10 and MMP11 in CAF and NF were analyzed by qRT-PCR before and after co-culture. Our results show the existence of a subpopulation of breast cancer patients (25.9%) with very high levels of MMP11 gene expression in PBMC. Also, gene expression of MMP1 and MMP11 increases in PBMC after co-culture with breast cancer cell lines, NF or CAF. PBMC from healthy or breast cancer patients induce an increased proliferation rate on MCF-7 and an increased invasiveness capacity of MDA-MB-231. Finally, we show a differential expression profile of inflammatory genes in NF and CAF when co-cultured with control or breast cancer PBMC. We have observed that MMPs’ expression in PBMC is regulated by the microenvironment, while the expression of inflammatory genes in NF or CAF is differentially regulated by PBMC. These findings confirm the importance of the crosstalk between stromal cells and suggest that PBMC would play a role in promoting aggressive tumor behavior.  相似文献   
64.
The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities—in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24−/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function—the chick CAM-LDA—a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.  相似文献   
65.
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.  相似文献   
66.
Elucidation of the biological functions of extracellular vesicles (EVs) and their potential roles in physiological and pathological processes is an expanding field of research. In this study, we characterized USC–derived EVs and studied their capacity to modulate the human immune response in vitro. We found that the USC–derived EVs are a heterogeneous population, ranging in size from that of micro–vesicles (150 nm–1 μm) down to that of exosomes (60–150 nm). Regarding their immunomodulatory functions, we found that upon isolation, the EVs (60–150 nm) induced B cell proliferation and IgM antibody secretion. Analysis of the EV contents unexpectedly revealed the presence of BAFF, APRIL, IL–6, and CD40L, all known to play a central role in B cell stimulation, differentiation, and humoral immunity. In regard to their effect on T cell functions, they resembled the function of mesenchymal stem cell (MSC)–derived EVs previously described, suppressing T cell response to activation. The finding that USC–derived EVs transport a potent bioactive cargo opens the door to a novel therapeutic avenue for boosting B cell responses in immunodeficiency or cancer.  相似文献   
67.
Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.  相似文献   
68.
T cells play a key role in tumour surveillance, both identifying and eliminating transformed cells. However, as tumours become established they form their own suppressive microenvironments capable of shutting down T cell function, and allowing tumours to persist and grow. To further understand the tumour microenvironment, including the interplay between different immune cells and their role in anti-tumour immune responses, a number of studies from mouse models to clinical trials have been performed. In this review, we examine mechanisms utilized by tumour cells to reduce their visibility to CD8+ Cytotoxic T lymphocytes (CTL), as well as therapeutic strategies trialled to overcome these tumour-evasion mechanisms. Next, we summarize recent advances in approaches to enhance CAR T cell activity and persistence over the past 10 years, including bispecific CAR T cell design and early evidence of efficacy. Lastly, we examine mechanisms of T cell infiltration and tumour regression, and discuss the strengths and weaknesses of different strategies to investigate T cell function in murine tumour models.  相似文献   
69.
We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a′ was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a′ in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号