排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
Jing Shen Qian Yang Lubo Hao Lingling Zhang Xuefeng Li Mingqi Zheng 《International journal of molecular sciences》2022,23(10)
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, and the sensitivities of Arabidopsis with or without the CYP77B34 transgene to herbicides with a different mode of actions (MoAs) were tested. Compared to Arabidopsis expressing pCAMBIA1302-GFP (empty plasmid), Arabidopsis transferring pCAMBIA1302-CYP77B34 (recombinant plasmid) became resistant to acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl, protoporphyrinogen oxidase (PPO)-inhibiting herbicides carfentrazone-ethyl and oxyfluorfen. Cytochrome P450 inhibitor malathion could reverse the resistance to tribenuron-methyl, carfentrazone-ethyl and oxyfluorfen in transgenic Arabidopsis plants. In addition, the metabolic rates of tribenuron-methyl in Arabidopsis expressing CYP77B34 were significantly higher than those in Arabidopsis expressing pCAMBIA1302-GFP. Other than that, the transgenic plants showed some tolerance to very-long-chain fatty acid synthesis (VLCFAs)-inhibiting herbicide pretilachlor and photosystem (PS) II-inhibiting herbicide bromoxynil. Subcellular localization revealed that the CYP77B34 protein was located in the endoplasmic reticulum (ER). These results clearly indicated that CYP77B34 mediated D. sophia resistance to tribenuron-methyl and may have been involved in D. sophia cross-resistance to carfentrazone-ethyl, oxyfluorfen, pretilachlor and bromoxynil. 相似文献
12.
Ran Wang Yong Fang Wunan Che Qinghe Zhang Jinda Wang Chen Luo 《International journal of molecular sciences》2022,23(18)
Bemisia tabaci is a threat to agriculture worldwide because of its potential to cause devastating damage to various crops. β-asarone is a bioactive pesticidal chemical originating from Acorus calamus (or “Sweet Flag”) plants, and it displays significant lethal effects against insect pests. In this study, we established a baseline of susceptibility to β-asarone from China and patterns of cross-resistance to other popular insecticides. We found that all the 12 field-collected B. tabaci populations exhibited high susceptibility to β-asarone, and there was no cross-resistance detected for other tested insecticides. We subsequently evaluated the sublethal effects of β-asarone on physiology and biochemistry via LC25 treatment (4.7 mg/L). LC25 of β-asarone resulted in prolonged developmental duration and decreased survival rates in B. tabaci nymphs, pseudopupae, and adults. Significant reductions in oviposition duration, fecundity, and hatchability were also observed. Additionally, the metabolic enzyme activity and expression profiles of selected cytochrome P450 monooxygenase (P450) genes following the LC25 treatment of β-asarone suggest that enhanced detoxification via P450s could be involved in the observed sublethal effects. These findings demonstrate the strong toxicity and significant sublethal effects of β-asarone on B. tabaci and suggest that the induced overexpression of P450 genes could be associated with the response to β-asarone. 相似文献
13.
14.
Dr. Dirk Holtmann Dr. Frank Hollmann 《Chembiochem : a European journal of chemical biology》2016,17(15):1391-1398
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions. 相似文献
15.
16.
Gabriel A. Ascue Avalos Dr. Helen S. Toogood Shirley Tait Dr. Hanan L. Messiha Prof. Nigel S. Scrutton 《Chembiochem : a European journal of chemical biology》2019,20(6):785-792
The monoterpenoid lactone derivative (+)-dihydrocarvide ((+)-DHCD) can be polymerised to form shape-memory polymers. Synthetic biology routes from simple, inexpensive carbon sources are an attractive, alternative route over chemical synthesis from (R)-carvone. We have demonstrated a proof-of-principle in vivo approach for the complete biosynthesis of (+)-DHCD from glucose in Escherichia coli (6.6 mg L−1). The pathway is based on the Mentha spicata route to (R)-carvone, with the addition of an ′ene′-reductase and Baeyer–Villiger cyclohexanone monooxygenase. Co-expression with a limonene synthesis pathway enzyme enables complete biocatalytic production within one microbial chassis. (+)-DHCD was successfully produced by screening multiple homologues of the pathway genes, combined with expression optimisation by selective promoter and/or ribosomal binding-site screening. This study demonstrates the potential application of synthetic biology approaches in the development of truly sustainable and renewable bioplastic monomers. 相似文献
17.
Dr. Makoto Hashimoto Dr. Takaaki Taguchi Dr. Kazuki Ishikawa Ryuichiro Mori Akari Hotta Susumu Watari Dr. Kazuaki Katakawa Prof. Dr. Takuya Kumamoto Dr. Susumu Okamoto Prof. Dr. Koji Ichinose 《Chembiochem : a European journal of chemical biology》2020,21(5):623-627
Flavin-dependent monooxygenases are ubiquitous in living systems and are classified into single- or two-component systems. Actinorhodin, produced by Streptomyces coelicolor, is a representative polycyclic polyketide that is hydroxylated through the action of the two-component ActVA-5/ActVB hydroxylase system. These homologous systems are widely distributed in bacteria, but their reaction mechanisms remain unclear. This in vitro investigation has provided chemical proof of two consecutive hydroxylations via hydroxynaphthalene intermediates involved in actinorhodin biosynthesis. The ActVA-5 oxygenase component catalyzed a stepwise dihydroxylation of the substrate, whereas the ActVB flavin reductase not only supplied a reduced cofactor, but also regulated the quinone–hydroquinone interconversion of an intermediate. Our study provides clues for understanding the general biosynthetic mechanisms of highly functionalized aromatic natural products with structural diversity. 相似文献
18.
Dr. Susann Herrmann Dr. Martin Dippe Dr. Pascal Pecher Evelyn Funke Prof. Dr. Markus Pietzsch Prof. Dr. Ludger A. Wessjohann 《Chembiochem : a European journal of chemical biology》2022,23(6):e202100480
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational redesign to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged with residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of nonaromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of byproducts. 相似文献
19.
Dr. Duangthip Trisrivirat Chalermroj Sutthaphirom Dr. Panu Pimviriyakul Prof. Dr. Pimchai Chaiyen 《Chembiochem : a European journal of chemical biology》2022,23(11):e202100666
Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l -amino acid oxidase and l -hydroxy acid oxidase families, including l -tryptophan 2-monooxygenase, l -phenylalanine 2-oxidase and l -lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l -lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2O2 on the imino acid product is the mechanism enabling oxidative decarboxylation. 相似文献
20.
Yaming Deng Quan Zhou Yuzhou Wu Xi Chen Fangrui Zhong 《International journal of molecular sciences》2022,23(5)
Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis. 相似文献