排序方式: 共有96条查询结果,搜索用时 15 毫秒
71.
《Journal of the European Ceramic Society》2014,34(2):465-473
Silica nano-powders were used as the Si source to substitute acidic silica sol in the SiO2–Al2O3 sol mixture for benefiting the sintering of the fibers at 1250 °C. With the increase of nano-silica, grain diameter and porosity of the fibers decreased firstly and increased subsequently, a minimum value of 35.86 nm and 0.86% was exhibited at the nano-silica content of 20%. The solid content, linear growth model and homogeneity of the precursor sol were not affected by the presence of nano-silica, although the continuous spinning length became low. NMR Analysis of 27Al indicated that polymerization degree of the sol was enhanced by nano-silica. The nano-particle contributed to the reduced intermolecular distance of gel, so the appropriate content existed for resulting the reduced grain size and compact structure of the fibers. 相似文献
72.
Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders
Zhengfa Dai Qiang Liu Guido Toci Matteo Vannini Angela Pirri Vladimir Babin Martin Nikl Wei Wang Haohong Chen Jiang Li 《Journal of the European Ceramic Society》2018,38(4):1632-1638
Ytterbium doped scandium oxide (Yb:Sc2O3) transparent ceramics were fabricated by a co-precipitation and vacuum sintering method. The characteristics of the precursor and the calcined powders were investigated by BET, XRD, and SEM. Ultra-fine and low agglomerated 5at%Yb:Sc2O3 powders with the average particle size about 65.4 nm were obtained after calcined at 1100 °C for 5 h. Using the synthesized powders as starting materials, 5at%Yb:Sc2O3 transparent ceramics with the in-line transmittance of 71.1% at 1100 nm and average grain size of 145 μm were fabricated by vacuum sintering at 1825 °C for 10 h. Quasi-CW laser oscillation of Yb:Sc2O3 ceramics was obtained at 1040.6 nm. A maximum output power as high as 2.44 W with a corresponding slope of 35% was achieved. Finally, the tunability of the ceramic was explored measuring a tuning range up to 55 nm. 相似文献
73.
74.
采用微乳液法-超临界流体干燥法制备出ZnS纳米粉体.以无水乙醇为超临界干燥介质,超临界流体干燥工艺为260℃×7.3 MPa×10 min.采用X射线衍射(XRD)、透射电镜(TEM)对制得的粉体进行了表征.结果表明,制备得到的ZnS纳米粉具有闪锌矿晶体结构,粉体外形为球形,粒子大小均匀,粒径约为5~7 nm,分散性较好,有效的改善了粉体的团聚程度,且晶化程度稍高于550℃煅烧处理的ZnS纳米粉. 相似文献
75.
76.
77.
配合-共沉淀法制备锑掺杂二氧化锡(ATO)粉 总被引:5,自引:0,他引:5
在充分回收含锡阳极泥有价金属的基础上,采用从锡锑二次资源中直接提取的高纯氯锡酸铵和氯氧锑为原料,合成了性能优良的纳米级锑掺杂二氧化锡(ATO)粉.针对液相共沉淀法制备ATO的过程中,锡和锑的水解不同步从而未能实现真正共沉淀掺杂的问题,以(NH4)2SnCl6和Sb4O5Cl2为原料,采用配合-共沉淀法,考察了反应过程中的pH、反应温度、掺锑浓度、煅烧温度、前驱体洗涤次数和分散剂种类等对ATO粒度和形貌的影响,确定了最优化条件,即:滴定终点pH=3,反应温度60℃,锑掺杂浓度10%(质量分数),热处理温度600℃,前驱体洗涤次数为6次,采用分散剂c,并进行了实验验证. 相似文献
78.
纳米陶瓷是指晶界宽度、晶粒尺寸、缺陷尺寸和第二相分布都在纳米量级上的陶瓷材料,因其克服了传统陶瓷脆性较大的致命缺点,并在超塑性、铁电性能和力学性能等方面具有特殊的性能,而受到人们的广泛关注。综述了纳米陶瓷粉体的制备方法,包括物理合成与化学合成两种方式。物理合成方法消耗较大的能量且设备投资较大,因此纳米陶瓷粉体的制备以化学合成为主。在制备粉体的后期,还需通过加入分散剂和超声等方法来解决其团聚的问题。成型与烧结过程直接影响纳米陶瓷的性能。成型过程包括干法与湿法成型。干法成型简单易行,成体均匀,但容易引入杂质;而湿法成型能最大程度地减少杂质与团聚,但其工艺复杂、条件苛刻。烧结方法分无压烧结和压力烧结。在烧结过程中,如何将颗粒限制在纳米级别上成为各种技术需要攻克的难点。最后,阐述了纳米陶瓷的力学性能、铁电性能和超塑性,并简要介绍其在防护与涂层、生物医学材料和器具等方面的应用与创新。 相似文献
79.
SPS烧结WC-5%Co纳米复合粉硬质合金 总被引:1,自引:0,他引:1
采用喷雾干燥、流态化床化学转化法生产的WC-5%Co纳米复合粉为原料,研究了放电等离子体烧结(SPS)对超细硬质合金显微结构和性能的影响,同时对SPS烧结、低压烧结、真空烧结等三种工艺进行了比较。结果表明:采用SPS烧结可以在较低的温度下实现超细硬质合金的固相烧结,使合金快速致密化,当1170℃保温6min、压力为50MPa时合金可以获得最好的力学性能;其显微硬度HV30、抗弯强度、断裂韧性分别为1870、3230MPa、10.96MPa/m1/2。低压烧结可促进颗粒在液相中重排,硬质合金压坯经8MPa、1410℃、保温45min烧结,也可以获得比较好的力学性能;而传统真空烧结,合金孔隙度比较高,晶粒不均匀,性能较差。 相似文献
80.
本文设计和制备了一种在C波段上具有宽频吸波性能的夹层复合材料,并用同轴电缆法和矢量网络分析仪分析了复合材料板的电磁参数和反射率。复合材料板厚度5mm,板表层与底层为玻璃纤维/环氧树脂复合材料,以“Fe50Ni50粉体/丁基橡胶纳米复合材料”为中间夹层。采用液相还原法制备了粒径约为100nm的球形Fe50Ni50粉末,采用二步共混法制备了Fe50Ni50 /IIR复合材料。研究表明, Fe50Ni50粉体/IIR纳米复合材料在2~18GHz频带上以磁损耗为主。表层与夹层的匹配是获得宽频吸波特性的关键,可以通过调整表层与夹层的厚度获得良好的吸波性能。当复合材料板厚度为5mm、夹层厚度为2mm时,板的R≤-10dB的吸波频带为5.6GHz~7.6GHz和16.8GHz~18GHz,吸波带宽达到3.2GHz,该材料在C波段吸波带宽达到2GHz,取得了突破。 相似文献