首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   41篇
  国内免费   1篇
综合类   3篇
化学工业   123篇
机械仪表   6篇
建筑科学   1篇
轻工业   74篇
石油天然气   1篇
一般工业技术   5篇
自动化技术   3篇
  2024年   1篇
  2023年   5篇
  2022年   14篇
  2021年   16篇
  2020年   7篇
  2019年   13篇
  2018年   12篇
  2017年   5篇
  2016年   12篇
  2015年   19篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   16篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   10篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有216条查询结果,搜索用时 0 毫秒
101.
裴轶琨 《中国酿造》2012,(11):163-166
蛹虫草中核苷及其代谢化合物的分析检测对于蛹虫草的生理和药理研究是非常重要的。该文采用超声波辅助提取HPLC-UV法,以反相DIAMONSIL C1(8250mm×460mm,5μm)为色谱柱,以水(含0.1%乙酸)和甲醇混合液为流动相进行梯度洗脱,同时测定了人工蛹虫草中的尿嘧啶、次黄嘌呤、鸟嘌呤、胸腺嘧啶、肌苷、鸟苷、腺苷和虫草素等8种化合物。结果表明,超声波提取的最优条件为提取溶剂为甲醇,提取温度25℃,提取时间15min,超声功率100W,料液比1:100,在最优的超声提取和色谱分离条件下,8种核苷类化合物在检测范围内的线性关系较好(r2>0.9995),检出限和定量限最低可达到16.9ng/mL和56.4ng/mL,日内和日间精密度(RSD)分别小于4.1%和4.6%,加样回收率为81.9%~93.7%。此法可用于冬虫夏草及其代用品中核苷类化合物的分析检测。  相似文献   
102.
5-Ethynyl-2'-deoxycytidine triphosphate (EdCTP) was synthesized as a probe to be used in conjunction with fluorescent labeling to facilitate the analysis of the in vivo dynamics of DNA-centered processes (DNA replication, repair and cytosine demethylation). Kinetic analysis showed that EdCTP is accepted as a substrate by Klenow exo(-) and DNA polymerase β. Incorporation of 5-ethynyl-2'-deoxycytidine (EdC) into DNA by these enzymes is, at most, modestly less efficient than native dC. EdC-containing DNA was visualized by using a click reaction with a fluorescent azide, following polymerase incorporation and T4 DNA ligase mediated ligation. Subsequent experiments in mouse male germ cells and zygotes demonstrated that EdC is a specific and reliable reporter of DNA replication, in vivo.  相似文献   
103.
We describe the synthesis and binding properties of oligonucleotides that contain one or more 2'-fluoro-α-L-RNA thymine monomer(s). Incorporation of 2'-fluoro-α-L-RNA thymine into oligodeoxynucleotides decreased thermal binding stability slightly upon hybridization with complementary DNA and RNA with the smallest destabilization towards RNA. Thermodynamic data show that the duplex formation with 2'-fluoro-α-L-RNA nucleotides is enthalpically disfavored but entropically favored. 2'-Fluoro-α-L-RNA nucleotides exhibit very good base pairing specificity following Watson--Crick rules. The 2'-fluoro-α-L-RNA monomer was designed as a monocyclic mimic of the bicyclic α-L-LNA, and molecular modeling showed that this indeed is the case as the 2'-fluoro monomer adopts a C3'-endo/C2'-exo sugar pucker. Molecular modeling of modified duplexes show that the 2'-fluoro-α-L-RNA nucleotides partake in Watson--Crick base pairing and nucleobase stacking when incorporated in duplexes while the unnatural α-L-ribo configured geometry of the sugar is absorbed by changes in the sugar-phosphate backbone torsion angles. The duplex behavior of our new nucleotide follows that of α-L-LNA, by and large.  相似文献   
104.
Water enables life and plays a critical role in biology. Considered as a versatile and adaptive component of the cell, water engages a wide range of biomolecular interactions. An organism can exist and function only if its self-assembled molecular structures are hydrated. It was shown recently that switching of AMP/ATP binding to the insulin-independent glucose transporter Human Erythrocyte Glucose Transport Protein (GLUT1) may greatly influence the ratio of bulk and bound water during regulation of glucose uptake by red blood cells. In this paper, we present the results on the hydration properties of AMP/ATP obtained by means of dielectric spectroscopy in aqueous solution and for fully ionized forms in solid amorphous films with the help of gravimetric studies.  相似文献   
105.
106.
Chemically modified nucleic acids are of utmost interest in synthetic biology for creating a regulable and sophisticated synthetic system with tailor-made properties. Implanting chemically modified nucleic acids in microorganisms might serve biotechnological applications, while using them in human cells might lead to new advanced medicines. Previously, we reported that a fully modified DNA sequence (called DZA) composed of the four base-modified nucleotides – 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine and 5-fluorocytosine – could function as a genetic template in prokaryotic cells, Escherichia coli. Here, we report the synthesis of long, partially, or fully modified DZA fragments that encode the yeast-enhanced red fluorescent protein (yEmRFP). The DZA sequences were directly introduced in the genome of the eukaryotic cells, Saccharomyces cerevisiae, via the yeast natural homologous recombination machinery. The simple and straightforward DZA cloning strategy reported here might be of interest to scientists working in the field of xenobiology in yeast.  相似文献   
107.
Mass spectrometry has evolved in recent years to a well-accepted and increasingly important complementary technique in molecular and structural biology. Here we review the many contributions mass spectrometry based studies have made in recent years in our understanding of the important cyclic nucleotide activated protein kinase A (PKA) and protein kinase G (PKG). We both describe the characterization of kinase isozymes, substrate phosphorylation, binding partners and post-translational modifications by proteomics based methodologies as well as their structural and functional properties as revealed by native mass spectrometry, H/D exchange MS and ion mobility. Combining all these mass spectrometry based data with other biophysical and biochemical data has been of great help to unravel the intricate regulation of kinase function in the cell in all its magnificent complexity.  相似文献   
108.
Over recent years, click reactions have become recognized as valuable and flexible tools to label biomacromolecules such as proteins, nucleic acids, and glycans. Some of the developed strategies can be performed not only in aqueous solution but also in the presence of cellular components, as well as on (or even in) living cells. These labeling strategies require the initial, specific modification of the target molecule with a small, reactive moiety. In the second step, a click reaction is used to covalently couple a reporter molecule to the biomolecule. Depending on the type of reporter, labeling by the click reaction can be used in many different applications, ranging from isolation to functional studies of biomacromolecules. In this minireview, we focus on labeling strategies for RNA that rely on the click reaction. We first highlight click reactions that have been used successfully to label modified RNA, and then describe different strategies to introduce the required reactive groups into target RNA. The benefits and potential limitations of the strategies are critically discussed with regard to possible future developments.  相似文献   
109.
110.
The replication of damaged DNA is a promutagenic process that can lead to disease development. This report evaluates the dynamics of nucleotide incorporation opposite an abasic site, a commonly formed DNA lesion, by using two fluorescent nucleotide analogues, 2-aminopurine deoxyribose triphosphate (2-APTP) and 5-phenylindole deoxyribose triphosphate (5-PhITP). In both cases, the kinetics of incorporation were compared by using a 32P-radiolabel extension assay versus a fluorescence-quenching assay. Although 2-APTP is efficiently incorporated opposite a templating nucleobase (thymine), the kinetics for incorporation opposite an abasic site are significantly slower. The lower catalytic efficiency hinders its use as a probe to study translesion DNA synthesis. In contrast, the rate constant for the incorporation of 5-PhITP opposite the DNA lesion is 100-fold faster than that for 2-APTP. Nearly identical kinetic parameters are obtained from fluorescence quenching or the 32P-radiolabel assay. Surprisingly, distinct differences in the kinetics of 5-PhITP incorporation opposite the DNA lesion are detected when using either bacteriophage T4 DNA polymerase or the Escherichia coli Klenow fragment. These differences suggest that the dynamics of nucleotide incorporation opposite an abasic site are polymerase-dependent. Collectively, these data indicate that 5-PhITP can be used to perform real-time analyses of translesion DNA synthesis as well as to functionally probe differences in polymerase function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号