首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38541篇
  免费   2862篇
  国内免费   1416篇
电工技术   895篇
技术理论   1篇
综合类   1133篇
化学工业   18582篇
金属工艺   2063篇
机械仪表   372篇
建筑科学   371篇
矿业工程   759篇
能源动力   3851篇
轻工业   983篇
水利工程   36篇
石油天然气   887篇
武器工业   50篇
无线电   2528篇
一般工业技术   7525篇
冶金工业   1988篇
原子能技术   334篇
自动化技术   461篇
  2024年   148篇
  2023年   735篇
  2022年   1076篇
  2021年   1462篇
  2020年   1324篇
  2019年   1336篇
  2018年   1240篇
  2017年   1425篇
  2016年   1325篇
  2015年   1209篇
  2014年   1782篇
  2013年   2097篇
  2012年   2523篇
  2011年   2957篇
  2010年   2293篇
  2009年   2213篇
  2008年   1940篇
  2007年   2161篇
  2006年   2061篇
  2005年   1627篇
  2004年   1475篇
  2003年   1310篇
  2002年   1144篇
  2001年   996篇
  2000年   897篇
  1999年   736篇
  1998年   615篇
  1997年   474篇
  1996年   372篇
  1995年   260篇
  1994年   259篇
  1993年   202篇
  1992年   202篇
  1991年   158篇
  1990年   136篇
  1989年   108篇
  1988年   68篇
  1987年   42篇
  1986年   35篇
  1985年   116篇
  1984年   84篇
  1983年   59篇
  1982年   71篇
  1981年   17篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1959年   5篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this study using poly(vinylalcohol) (PVOH) membranes cross-linked with tartaric acid (Tac) desorption experiments were performed for selected concentrations of binary ethyl acetate (EtAc)-water mixture at temperatures of 30°, 40°, and 50°C to determine sorption of components. Sorption values measured were compared with those estimated by the Flory-Huggins approach. Additionally, desorption results were compared with pervaporation results of another study in terms of solution-diffusion theory, and the effect of thermodynamic interactions on selective transport of the binary mixture and membrane system was investigated. The results obtained show that selective transport of EtAc-water mixture was influenced by increasing temperature and water content in the feed. It is shown that preferential sorption is more effective for pervaporation selectivity than diffusion selectivity.  相似文献   
992.
In this study, electrochemical and spectroscopic characterization of home-made CeO2, activated carbon-based Ag-Cu electro-catalysts, and preliminary anode polarization results in a direct ethanol fuel cell test system were presented. Ag-Cu transition metal couples were impregnated onto carbon and cerium oxide supports by wet impregnation, ion exchange, and co-precipitation techniques. Wet impregnation technique was selected for further spectroscopic analysis and fuel cell testing due to its easy metal loading advantage and highest peak currents in ethanol-containing electrolyte environment. When Ag and Cu were loaded 37.5 and 12.5 wt.% onto carbon and cerium oxide by wet impregnation technique, XPS analysis indicated an appreciable amount of Ag and Ag2O and a high amount of CuO. In cerium oxide-based samples atomic percentage of oxygen fits well with the stoichiometry of CuO/CeO2. Preliminary results show that BET surface area and the current peaks exhibit a close resemblance (highest BET surface area indicates highest anodic dissolution current), which is thought to be due to the high accessibility of copper layers impregnated onto cerium oxide and activated carbon in H2SO4 electrolyte environment. Hydrogen reduction of CeO2-based samples prepared by wet impregnation at 750°C greatly improved anode polarization and onset oxidation potential.  相似文献   
993.
The effects of graphene oxide (GO) on the yield stress‐pH of α‐Al2O3 (alumina) suspensions were investigated. For micron‐sized platelet alumina suspensions, micron‐sized GO additive increased the maximum yield stress by as much as six‐folds. This was attributed to GO‐mediated bridging interactions between the platelet particles. This type of bridging interactions was much less effective with submicron‐sized, spherical, and irregular shape alumina. Adsorption of the anionic GO reflected by the shift of pH of zero zeta potential to a lower pH is particularly high for platelet alumina. The 1.0 dwb % GO concentration added is sufficient to reinforce each platelet particle–particle bond, assisted by a directed GO–platelet interaction configuration. This is, however, not true with submicron‐sized particles as the particle concentration increases sharply with the inverse of the particle diameter to power of 3. Moreover, a GO sheet can adsorb several submicron‐sized particles and this does not produce the right interaction configuration. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3633–3641, 2013  相似文献   
994.
Novel microporous membranes were prepared via thermally induced solid‐liquid (S‐L) phase separation of mixtures containing poly(vinylidene fluoride) (PVDF)/diphenyl ketone (DPK)/nanoparticles [such as montmorillonite (MMT) and polytetrafluoroethylene (PTFE)] in diluted systems with a mass ratio of 29.7/70/0.3 wt %. The crystallization and melting characteristics of these diluted systems were investigated by polarizing optical microscopy (POM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD). The nanoparticle structure and the interaction between PVDF chains and nanoparticle surfaces determined the crystallization behavior and morphology of the PVDF membrane. The addition of MMT and PTFE had a significant nucleation enhancement on the crystallization of PVDF accompanied by S‐L phase separation during the thermally induced phase separation (TIPS) process. It was observed that an interconnected lamellar structure was formed in these two membranes, leading to a higher tensile strength compared with that of the reference membrane without nanoparticles addition. Additionally, addition of MMT facilitates the fiber‐like β phase crystal formation, resulting in the highest elongation at break. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
995.
The ultraviolet radiation aging behaviors of PVC/CaCO3 and PVC/CaCO3/macromolecular modifier composites were studied through whiteness measurement, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscopy, and mechanical properties test. It was found that nano‐CaCO3 particles used as ultraviolet light screening agents could significantly enhance the antiaging properties of PVC materials. Due to the macromolecular modifier coated on nano‐CaCO3 particles, the compatibility of nano‐CaCO3 and PVC matrix was improved, resulting in uniform dispersion of nano‐CaCO3 in PVC matrix. Therefore, the PVC/CaCO3/MP composite exhibited better antiaging properties than PVC/CaCO3 composite. After 12 h of ultraviolet irradiation, the tensile strength retention, elongation at break retention, and impact strength retention of PVC/CaCO3/MP composite were 79.5%, 74.5%, and 75.3%, which were much higher than that of neat PVC and PVC/CaCO3 composite. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
996.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
997.
A highly hydrophilic hollow fiber poly(vinylidene fluoride) (PVDF) membrane [PVDF‐cl‐poly(vinyl pyrrolidone) (PVP) membrane] was prepared by a cross‐linking reaction with the hydrophilic PVP, which was immobilized firmly on the outer surface and cross‐section of the PVDF hollow fiber membrane via a simple immersion process. The cross‐linking between PVDF and PVP was firstly verified via nuclear magnetic resonance measurement on PVP solution after cross‐linking. The hydrophilic stability of the modified PVDF membrane was evaluated by measuring the pure water flux after different times of immersion and drying. The anti‐fouling properties were estimated by cyclic filtration of protein solution. When the cross‐linking time was as long as 6 hr and the PVP content reached 5 wt %, the pure water flux (Jv) was constant as ~ 600 L m?2 hr?1. The hydrophilicity of the PVDF‐cl‐PVP membrane was significantly enhanced and exhibited a good stability. The PVDF‐cl‐PVP membrane showed an excellent anti‐protein‐fouling performance during the cyclic filtration of bovine serum albumin solution. Therefore, a highly hydrophilic and anti‐protein‐fouling PVDF hollow fiber membrane with a long‐term stability can be prepared by a simple and economical cross‐linking process with PVP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
998.
A new poly(ether‐amide; PEA) as a source of polymeric matrix, containing flexible ether group in the main chain was synthesized by direct polycondensation reaction of 1,2‐(4‐carboxy phenoxy)ethane with 4,4‐diaminodiphenyl ether in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The resulting PEA was characterized by gel permeation chromatography (GPC), 1H NMR and FT‐IR spectroscopy. Magnesium Hydroxide (MH) nanostructure was synthesized by the reaction of magnesium sulfate and sodium hydroxide by sonochemical method. The MH particle was characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Then Mg(OH)2 nanostructure was added to poly(ether‐amide) matrix and resulting nanocomposites were characterized by XRD, SEM, and Thermogravimetry Analysis (TGA). Thermal decomposition of the PEA shifted towards higher temperature in the presence of the magnesium hydroxide nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
999.
A novel water‐soluble conducting polymer composite, poly(vinyl alcohol‐histidine) was synthesized from aqueous solution by free radical condensation using persulfate. The composite was characterized using UV–Visible, Fourier transform infrared, scanning electron microscopy, thermogravimetric analysis (TG/DTG), and differential scanning calorimetry techniques while its AC conductance was measured by LCZ analyzer. The inhibitive action of the composite on the corrosion behavior of mild steel in 1M HCl was studied by conventional weight loss method, potentiodynamic polarization studies (Tafel), linear polarization studies, and electrochemical impedance spectroscopy. The effects of inhibitor concentrations, exposure time, and temperature have been investigated. The corrosion rate, inhibition efficiency (IE), and other parameters have been evaluated for different inhibitor concentrations. The composite provided more than 95% IE at an optimum concentration of 0.6% by weight. The results showed the composite as an effective mixed type inhibitor. The adsorption of this inhibitor obeyed Temkin adsorption isotherm. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
1000.
A novel method is developed for grafting multiwall carbon nanotubes (MWNTs) onto the surface of polyacrylonitrile‐based high strength (T300GB) carbon fiber. Functionalized MWNTs were well dispersed in the PVA solution and the carbon fiber was dip‐coated in this solution. After heat treatment of the coated carbon fiber under a nitrogen atmosphere, MWNTs with carboxyl groups were grafted onto the functionalized carbon fiber via chemical interaction. The resulting materials were characterized by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Raman spectrum and mechanical testing. FESEM observations revealed uniform coverage of carbon nanotubes on carbon fiber. The carbon fiber grafted with MWNTs improved the tensile strength by 12% with respect to the pristine carbon fiber. These results are supportive of good interfacial bonding between the carbon nanotubes (CNTs) and carbon fiber. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号