首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38559篇
  免费   3038篇
  国内免费   1385篇
电工技术   811篇
技术理论   1篇
综合类   1977篇
化学工业   17859篇
金属工艺   1662篇
机械仪表   927篇
建筑科学   1466篇
矿业工程   680篇
能源动力   826篇
轻工业   2786篇
水利工程   230篇
石油天然气   3054篇
武器工业   310篇
无线电   2032篇
一般工业技术   6512篇
冶金工业   1065篇
原子能技术   196篇
自动化技术   588篇
  2024年   185篇
  2023年   608篇
  2022年   833篇
  2021年   1116篇
  2020年   1046篇
  2019年   977篇
  2018年   967篇
  2017年   1191篇
  2016年   1184篇
  2015年   1219篇
  2014年   1849篇
  2013年   2149篇
  2012年   2504篇
  2011年   2815篇
  2010年   2108篇
  2009年   2238篇
  2008年   1892篇
  2007年   2561篇
  2006年   2502篇
  2005年   2081篇
  2004年   1811篇
  2003年   1571篇
  2002年   1374篇
  2001年   1214篇
  2000年   976篇
  1999年   833篇
  1998年   710篇
  1997年   536篇
  1996年   364篇
  1995年   292篇
  1994年   264篇
  1993年   221篇
  1992年   189篇
  1991年   138篇
  1990年   77篇
  1989年   55篇
  1988年   49篇
  1987年   28篇
  1986年   34篇
  1985年   58篇
  1984年   46篇
  1983年   40篇
  1982年   36篇
  1981年   5篇
  1980年   7篇
  1979年   2篇
  1975年   2篇
  1974年   5篇
  1955年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
22.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
23.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
24.
25.
Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with a focus on colorectal cancer, one of the leading cancers respective the incidence and mortality. Our previous work included the analysis of trimethylations of lysine 9 on histone 3 (H3K9me3) and of lysine 20 on histone 4 (H4K20me3) by chromatin immuno- precipitation-related PCR in circulating nucleosomes. Here we asked whether global immunologic measurement of histone marks in circulation could be a suitable approach to show their potential as biomarkers. In addition to H3K9me3 and H4K20me3 we also measured H3K27me3 in plasma samples from CRC patients (n = 63) and cancer free individuals (n = 40) by ELISA-based methylation assays. Our results show that of three marks, the amounts of H3K27me3 (p = 0.04) and H4K20me3 (p < 0.001) were significantly lower in CRC patients than in healthy controls. For H3K9me3 similar amounts were measured in both groups. Areas under the curve (AUC) in receiver operating characteristic (ROC) curves indicating the power of CRC detection were 0.620 for H3K27me3, 0.715 for H4K20me3 and 0.769 for the combination of both markers. In conclusion, findings of this preliminary study reveal the potential of blood-based detection of CRC by quantification of histone methylation marks and the additive effect of the marker combination.  相似文献   
26.
The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG) group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.  相似文献   
27.
Progesterone is a natural hormone steroid used in humans for several treatments and in livestock for artificial insemination, which exhibits two polymorphic forms at ambient conditions: form 1 and form 2. Form 2 is metastable and more soluble than form 1; however, it is not suitable to use as powder raw material because it transforms into form 1 by the effects of grinding. A polymorphic screening of progesterone based on polymer-induced heteronucleation method was performed as an alternative to prepare the metastable form. Polyvinyl alcohol, hydroxypropyl methylcellulose (HPMC), dextran, gelatin, polyisoprene (PI) and acrylonitrile-butadiene (NBR) copolymer were used. Crystals were prepared from 0.5, 10 and 40?mg/mL solutions in acetone at room temperature by solvent evaporation. The samples were characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), scanning electron microcopy and attenuated total reflectance infrared Fourier transform spectroscopy. Form 1 was nucleated from 40?mg/mL solutions on the six polymers and from 10?mg/mL solutions on PI and NBR. The mixture of form 1 and form 2 was obtained from 10?mg/mL solution on HPMC, dextran and gelatin and from 0.5?mg/mL solution crystallizations. Therefore, the polymeric devices, which crystallized the metastable and more soluble polymorph (2) of progesterone, would be a promissory alternative for the pharmaceutical applications.  相似文献   
28.
Abstract

Preparation condition can affect the structure and the properties of nanofiber membrane. In order to explore suitable conditions to prepare the Fe3O4/PVDF nanofiber membrane with good hydrophobicity, the hydrophobicity of Fe3O4/PVDF nanofiber membranes obtained by electrospinning was investigated by changing preparation conditions like weight percentage of Fe3O4 nanoparticles, blending quality concentration of poly (vinylidene fluoride) (PVDF) and Fe3O4 nanoparticles, and positive voltage. And the variations of hydrophobicity of Fe3O4/PVDF nanofiber membranes modified by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane were studied. The results show that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has changed under different preparation conditions. The contact angles of samples increased after a modification by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane, which indicates that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has been enhanced.  相似文献   
29.
Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete mixtures are tested 7, 14, and 28 days after casting. The development of degree of hydration is followed for 20 corresponding paste mixtures.Both when SAP is added with extra water to compensate the SAP water absorption in fresh concrete and without extra water, the internal curing water held by SAP may contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less.  相似文献   
30.
Soft robots built with active soft materials have been increasingly attractive. Despite tremendous efforts in soft sensors and actuators, it remains extremely challenging to construct intelligent soft materials that simultaneously actuate and sense their own motions, resembling living organisms’ neuromuscular behaviors. This work presents a soft robotic strategy that couples actuation and strain-sensing into a single homogeneous material, composed of an interpenetrating double-network of a nanostructured thermo-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) and a light-absorbing, electrically conductive polymer polypyrrole (PPy). This design grants the material both photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. This self-sensing actuating soft material demonstrated ultra-high stretchability (210%) and large volume shrinkage (70%) rapidly upon irradiation or heating (13%/°C, 6-time faster than conventional PNIPAAm). The significant deswelling of the hydrogel network induces densification of percolation in the PPy network, leading to a drastic conductivity change upon locomotion with a gauge factor of 1.0. The material demonstrated a variety of precise and remotely-driven photo-responsive locomotion such as signal-tracking, bending, weightlifting, object grasping and transporting, while simultaneously monitoring these motions itself via real-time resistance change. The multifunctional sensory actuatable materials may lead to the next-generation soft robots of higher levels of autonomy and complexity with self-diagnostic feedback control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号