首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35681篇
  免费   3748篇
  国内免费   2536篇
电工技术   1664篇
综合类   2320篇
化学工业   7949篇
金属工艺   3683篇
机械仪表   1108篇
建筑科学   2040篇
矿业工程   1119篇
能源动力   1305篇
轻工业   1488篇
水利工程   789篇
石油天然气   716篇
武器工业   113篇
无线电   3611篇
一般工业技术   5881篇
冶金工业   6303篇
原子能技术   1361篇
自动化技术   515篇
  2024年   135篇
  2023年   699篇
  2022年   969篇
  2021年   1189篇
  2020年   1307篇
  2019年   1231篇
  2018年   1171篇
  2017年   1310篇
  2016年   1252篇
  2015年   1200篇
  2014年   1781篇
  2013年   1887篇
  2012年   2292篇
  2011年   2531篇
  2010年   1884篇
  2009年   1982篇
  2008年   1777篇
  2007年   2132篇
  2006年   2265篇
  2005年   1841篇
  2004年   1761篇
  2003年   1508篇
  2002年   1328篇
  2001年   1124篇
  2000年   1006篇
  1999年   701篇
  1998年   587篇
  1997年   490篇
  1996年   471篇
  1995年   385篇
  1994年   363篇
  1993年   271篇
  1992年   251篇
  1991年   198篇
  1990年   161篇
  1989年   107篇
  1988年   92篇
  1987年   68篇
  1986年   73篇
  1985年   39篇
  1984年   37篇
  1983年   15篇
  1982年   24篇
  1981年   19篇
  1980年   12篇
  1979年   10篇
  1978年   5篇
  1974年   4篇
  1959年   5篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
本项目主要研究和实现了工业废白土在BAYAH燃煤自备电厂中的再利用,实现变废为宝,减少了环境污染,同时为企业创造了一定的经济效益。针对废白土的特性,对燃料输送系统给煤机、皮带机、煤仓、下料溜子和排渣系统进行了改造。通过修改操作规程消除废白土对锅炉运行的影响。  相似文献   
12.
13.
ABSTRACT

In this study, effect of calcium and gypsum on scheelite and fluorite was investigated using sodium oleate as collector. Micro-flotation and contact angle results showed that the adsorption of calcium could inhibit the hydrophobicity of scheelite and fluorite. Moreover, sulfate could enhance the inhibition. FT-IR results showed that calcium could be priori precipitated into calcium oleate and adsorb on mineral surface. The adsorption of calcium could increase the scheelite potential to IEP, while it showed limited effect on fluorite potential. However, the interaction of calcium on scheelite and fluorite in gypsum solution was more complex than that in calcium solution.  相似文献   
14.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
15.
In the present work we have studied the effect of Na on the properties of graded Cu(In1−xGax)Se2 (CIGS) layer. Graded CIGS structures were prepared by chemical spray pyrolysis at a substrate temperature of 350 °C on soda lime glass. Sodium chloride is used as a dopant along with metal (Cu/In/Ga) chlorides and n, n-dimethyl selenourea precursors. The addition of Na exhibited better crystallinity with chalcopyrite phase and an improvement in preferential orientation along the (112) plane. Energy dispersive analysis of X-rays (line/point mapping) revealed a graded nature of the film and percentage incorporation of Na (0.86 at%). Raman studies showed that the film without sodium doping consists of mixed phase of chalcopyrite and CuAu ordering. Influence of sodium showed a remarkable decrease in electrical resistivity (0.49–0.087 Ω cm) as well as an increase in carrier concentration (3.0×1018–2.5×1019 cm−3) compared to the un-doped films. As carrier concentration increased after sodium doping, the band gap shifted from 1.32 eV to 1.20 eV. Activation energies for un-doped and Na doped films from modified Arrhenius plot were calculated to be 0.49 eV and 0.20 eV, respectively. Extremely short carrier lifetimes in the CIGS thin films were measured by a novel, non-destructive, noncontact method (transmission modulated photoconductive decay). Minority carrier lifetimes of graded CIGS layers without and with external Na doping are found to be 3.0 and 5.6 ns, respectively.  相似文献   
16.
17.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
18.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
19.
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.  相似文献   
20.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号