首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38082篇
  免费   3981篇
  国内免费   2111篇
电工技术   471篇
综合类   2252篇
化学工业   18576篇
金属工艺   2583篇
机械仪表   397篇
建筑科学   873篇
矿业工程   606篇
能源动力   3863篇
轻工业   3919篇
水利工程   156篇
石油天然气   2126篇
武器工业   327篇
无线电   1056篇
一般工业技术   3959篇
冶金工业   1660篇
原子能技术   825篇
自动化技术   525篇
  2024年   118篇
  2023年   1031篇
  2022年   1374篇
  2021年   1537篇
  2020年   1536篇
  2019年   1496篇
  2018年   1359篇
  2017年   1484篇
  2016年   1408篇
  2015年   1261篇
  2014年   1846篇
  2013年   2513篇
  2012年   2369篇
  2011年   2414篇
  2010年   1830篇
  2009年   1967篇
  2008年   1702篇
  2007年   2172篇
  2006年   2005篇
  2005年   1612篇
  2004年   1507篇
  2003年   1378篇
  2002年   1158篇
  2001年   1018篇
  2000年   927篇
  1999年   790篇
  1998年   632篇
  1997年   567篇
  1996年   508篇
  1995年   402篇
  1994年   426篇
  1993年   323篇
  1992年   261篇
  1991年   239篇
  1990年   188篇
  1989年   139篇
  1988年   98篇
  1987年   92篇
  1986年   50篇
  1985年   86篇
  1984年   80篇
  1983年   48篇
  1982年   50篇
  1981年   14篇
  1980年   20篇
  1979年   14篇
  1964年   9篇
  1957年   8篇
  1955年   8篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
931.
Porous structured materials have unique architectures and are promising for lithium‐ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium‐ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from ?20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at ?20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO4 cathode show an excellent cyclability at ?20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium‐ion batteries.  相似文献   
932.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
933.
A synthesis strategy for the preparation of trimetallic PtCoFe alloy nanoparticle superlattices is reported. Trimetallic PtCoFe alloy monolayer array of nanoparticle superlattices with a large density of high index facets and platinum‐rich surface are successfully prepared by coreduction of metal precursors in formamide solvent. The concentration of cetyl trimethyl ammonium bromide plays a vital role for the formation of a monolayer array of nanoparticle superlattices, while the size of nanoparticles is determined by NaI. The prepared monolayer array of nanoparticle superlattices is the superior catalyst for oxygen reduction reaction as well as for ethanol oxidation owing to their specific structural and compositional characteristics.  相似文献   
934.
The surface energy and surface stability of Ag nanocrystals (NCs) are under debate because the measurable values of the surface energy are very inconsistent, and the indices of the observed thermally stable surfaces are apparently in conflict. To clarify this issue, a transmission electron microscope is used to investigate these problems in situ with elaborately designed carbon‐shell‐capsulated Ag NCs. It is demonstrated that the {111} surfaces are still thermally stable at elevated temperatures, and the victory of the formation of {110} surfaces over {111} surfaces on the Ag NCs during sublimation is due to the special crystal geometry. It is found that the Ag NCs behave as quasiliquids during sublimation, and the cubic NCs represent a featured shape evolution, which is codetermined by both the wetting equilibrium at the Ag–C interface and the relaxation of the system surface energy. Small Ag NCs (≈10 nm) no longer maintain the wetting equilibrium observed in larger Ag NCs, and the crystal orientations of ultrafine Ag NCs (≈6 nm) can rotate to achieve further shape relaxation. Using sublimation kinetics, the mean surface energy of Ag NCs at 1073 K is calculated to be 1.1–1.3 J m?2.  相似文献   
935.
936.
937.
Nitrogen and sulfur‐codoped graphene composites with Co9S8 (NS/rGO‐Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only ?0.193 V to reach 10 mA cm?2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half‐wave potential in ORR and the potential to reach 10 mA cm?2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm?2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S‐codoped rGO, and Co9S8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions.  相似文献   
938.
A high density of edge sites and other defects can significantly improve the catalytic activity of layered 2D materials. Herein, this study demonstrates a novel top‐down strategy to maximize catalytic edge sites of MoSe2 by breaking up bulk MoSe2 into quantum dots (QDs) via “turbulent shear mixing” (TSM). The ultrasmall size of the MoSe2 QDs provides a high fraction of atoms in reactive edge sites, thus significantly improving the catalytic activities. The violent TSM further introduces abundant defects as additional active sites for electrocatalytic reactions. These edge‐proliferated and defect‐laden MoSe2 QDs are found to be efficient electrocatalysts for the hydrogen evolution reaction, and useful as counter electrodes in dye‐sensitized solar cells. The work provides a new paradigm for creating edge‐proliferated and defect‐rich QDs from bulk layered materials.  相似文献   
939.
The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform Co x O y nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the Co x O y nanoparticles and their detaching from the substrate.
  相似文献   
940.
Heteroatom doping,precise composition control,and rational morphology design are efficient strategies for producing novel nanocatalysts for the oxygen reduction reaction (ORR) in fuel cells.Herein,a cost-effective approach to synthesize nitrogen-and sulfur-codoped carbon nanowire aerogels using a hard templating method is proposed.The aerogels prepared using a combination of hydrothermal treatment and carbonization exhibit good catalytic activity for the ORR in alkaline solution.At the optimal annealing temperature and mass ratio between the nitrogen and sulfur precursors,the resultant aerogels show comparable electrocatalytic activity to that of a commercial Pt/C catalyst for the ORR.Importantly,the optimized catalyst shows much better long-term stability and satisfactory tolerance for the methanol crossover effect.These codoped aerogels are expected to have potential applications in fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号