首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11238篇
  免费   787篇
  国内免费   274篇
电工技术   105篇
综合类   722篇
化学工业   6194篇
金属工艺   261篇
机械仪表   254篇
建筑科学   1483篇
矿业工程   120篇
能源动力   73篇
轻工业   724篇
水利工程   162篇
石油天然气   123篇
武器工业   77篇
无线电   97篇
一般工业技术   1557篇
冶金工业   99篇
原子能技术   14篇
自动化技术   234篇
  2024年   81篇
  2023年   123篇
  2022年   176篇
  2021年   378篇
  2020年   317篇
  2019年   301篇
  2018年   286篇
  2017年   339篇
  2016年   309篇
  2015年   343篇
  2014年   592篇
  2013年   588篇
  2012年   809篇
  2011年   825篇
  2010年   639篇
  2009年   647篇
  2008年   546篇
  2007年   742篇
  2006年   660篇
  2005年   630篇
  2004年   509篇
  2003年   451篇
  2002年   374篇
  2001年   345篇
  2000年   251篇
  1999年   212篇
  1998年   196篇
  1997年   132篇
  1996年   90篇
  1995年   67篇
  1994年   68篇
  1993年   66篇
  1992年   59篇
  1991年   42篇
  1990年   19篇
  1989年   28篇
  1988年   8篇
  1987年   10篇
  1986年   5篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1964年   1篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
31.
在合成氟碳聚醚单体1,1,5-三氢八氟戊基缩水甘油醚(FGE-2)的过程中,用气液色谱跟踪研究1,1,5-三氢八氟戊醇(FOH-2)与环氧氯丙烷(ECH)在 NaOH存在下的缩合反应进程,发现该反应是一个可逆反应;反应温度较低(30℃)时反应速度太慢,反应温度过高(80℃)时平衡逆向移动,较适合的反应温度为50℃.当反应物摩尔比为: FOH-2/ECH/NaOH=1/3/1~1.2时,在无水介质中,采用FOH-2后加法,反应4~5h即达平衡;若NaOH过量5%~20%,转化率达90%以上,产率可达82%.采用ECH后加法,也得到良好结果.反应物经减压精密分馏,分离回收ECH和FOH-2后,收集在266.6Pa真空度下b.p. 68℃的馏分,得到FGE-2产品,环氧值为0.3440~0.3471mol/100g,纯度达99%以上.  相似文献   
32.
介绍了以环戊烷为发泡剂的冰箱高压发泡模塑生产成套设备的安全设计原则和具体实施内容,重点介绍了环戊烷/多元醇预混系统、聚氨酯环戊烷高压发泡机和聚氨酯冰箱发泡模塑生产线的安全要点。  相似文献   
33.
详细阐述了硅烷改性预聚体的合成方法和硅烷改性聚合物密封剂的制备及固化机理,总结了国内外硅烷改性聚合物密封剂的研究现状及进展,最后分析了硅烷改性聚合物密封剂在我国工业发展中的重要作用。  相似文献   
34.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
35.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
36.
根据侵彻阻力的一般表达式,文中引入阻尼函数ξ对尖头刚性弹垂直贯穿金属厚靶问题进行研究,给出了由四个无量纲物理量,也即撞击函数I、弹头形状函数N、阻尼函数ξ和无量纲靶厚χ表示的终点弹道性能表达式。结合公开发表的穿甲实验数据,将相关分析与不计阻尼函数ξ情形的异同进行了比较,分析结果与实验数据相符。  相似文献   
37.
Graphene‐based porous structures have triggered tremendous attention due to their promising application in many fields. Recent progress has yielded structures with stochastic porous networks, which limit their controllability and potential performance. It still remains a big challenge for the scalable production to integrate the 2D building block into engineered porous architectures in multidimensions. Here, a versatile technique based on soft bubble templating and fixation by freezing is described to fabricate 3D bubble‐derived graphene foams (BGFs) and 2D bubble‐derived graphene porous membranes (BGPMs). These light‐weight novel structures are carefully tuned. The BGFs show high adsorption capabilities for organic solvents and good recovery in structural deformation. Furthermore, applications of BGFs and BGPMs in strain sensors for wearable devices are discussed, working as a combined system which can both detect the compressive and tensile deformation. This technique can be extended to assemble other nanomaterials as building blocks into macroscopic configurations.  相似文献   
38.
A simple fiber spinning method used to fabricate elastomeric composite fibers with outstanding mechanical performance is demonstrated. By taking advantage of the large size of as‐prepared graphene oxide sheets (in the order of tens of micrometers) and their liquid crystalline behavior, elastomeric composite fibers with outstanding low strain properties have been fabricated without compromising their high strain properties. For example, the modulus and yield stress of the parent elastomer improved by 80‐ and 40‐fold, respectively, while maintaining the high extensibility of ~400% strain inherent to the parent elastomer. This outstanding mechanical performance was shown to be dependent upon the GO sheet size. Insights into how both the GO sheet size dimension and dispersion parameters influence the mechanical behavior at various applied strains are discussed.  相似文献   
39.
用红外光谱跟踪确定了同步互穿聚合物网络的形成工艺 ,并制成其梯次化复合涂层 ,TEM检测表明两相间的相畴尺寸在纳米级范围内 ;在此基础上 ,以钛酸钡超细纤维对此网络体系进行复合 ,确定偶联剂的加入量及复合工艺 ,测量了不同复合量下材料的电阻率 ,并考察了其伏安特性。此工作可为拓展此类材料的应用领域提供有价值的参考数据。  相似文献   
40.
Stretchable electronics have recently been extensively investigated for the development of highly advanced human‐interactive devices. Here, a highly stretchable and sensitive strain sensor is fabricated based on the composite of fragmentized graphene foam (FGF) and polydimethylsiloxane (PDMS). A graphene foam (GF) is disintegrated into 200–300 μm sized fragments while maintaining its 3D structure by using a vortex mixer, forming a percolation network of the FGFs. The strain sensor shows high sensitivity with a gauge factor of 15 to 29, which is much higher compared to the GF/PDMS strain sensor with a gauge factor of 2.2. It is attributed to the great change in the contact resistance between FGFs over the large contact area, when stretched. In addition to the high sensitivity, the FGF/PDMS strain sensor exhibits high stretchability over 70% and high durability over 10 000 stretching‐releasing cycles. When the sensor is attached to the human body, it functions as a health‐monitoring device by detecting various human motions such as the bending of elbows and fingers in addition to the pulse of radial artery. Finally, by using the FGF, PDMS, and μ‐LEDs, a stretchable touch sensor array is fabricated, thus demonstrating its potential application as an artificial skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号