首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   79篇
  国内免费   14篇
综合类   16篇
化学工业   264篇
金属工艺   13篇
机械仪表   15篇
建筑科学   48篇
矿业工程   1篇
能源动力   1篇
轻工业   8篇
水利工程   1篇
石油天然气   1篇
无线电   109篇
一般工业技术   195篇
冶金工业   2篇
自动化技术   9篇
  2024年   6篇
  2023年   35篇
  2022年   35篇
  2021年   64篇
  2020年   55篇
  2019年   52篇
  2018年   34篇
  2017年   28篇
  2016年   28篇
  2015年   33篇
  2014年   35篇
  2013年   53篇
  2012年   53篇
  2011年   29篇
  2010年   24篇
  2009年   26篇
  2008年   21篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
排序方式: 共有683条查询结果,搜索用时 15 毫秒
21.
Tissue-engineered scaffolds have been extensively explored for treating bone defects; however, slow and insufficient vascularization throughout the scaffolds remains a key challenge for further application. Herein, a versatile microfluidic 3D printing strategy to fabricate black phosphorus (BP) incorporated fibrous scaffolds with photothermal responsive channels for improving vascularization and bone regeneration is proposed. The thermal channeled scaffolds display reversible shrinkage and swelling behavior controlled by near-infrared irradiation, which facilitates the penetration of suspended cells into the scaffold channels and promotes the prevascularization. Furthermore, the embedded BP nanosheets exhibit intrinsic properties for in situ biomineralization and improve in vitro cell proliferation and osteogenic differentiation. Following transplantation in vivo, these channels also promote host vessel infiltration deep into the scaffolds and effectively accelerate the healing process of bone defects. Thus, it is believed that these near-infrared responsive channeled scaffolds are promising candidates for tissue/vascular ingrowth in diverse tissue engineering applications.  相似文献   
22.
A bioengineered spinal cord is fabricated via extrusion‐based multimaterial 3D bioprinting, in which clusters of induced pluripotent stem cell (iPSC)‐derived spinal neuronal progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) are placed in precise positions within 3D printed biocompatible scaffolds during assembly. The location of a cluster of cells, of a single type or multiple types, is controlled using a point‐dispensing printing method with a 200 µm center‐to‐center spacing within 150 µm wide channels. The bioprinted sNPCs differentiate and extend axons throughout microscale scaffold channels, and the activity of these neuronal networks is confirmed by physiological spontaneous calcium flux studies. Successful bioprinting of OPCs in combination with sNPCs demonstrates a multicellular neural tissue engineering approach, where the ability to direct the patterning and combination of transplanted neuronal and glial cells can be beneficial in rebuilding functional axonal connections across areas of central nervous system (CNS) tissue damage. This platform can be used to prepare novel biomimetic, hydrogel‐based scaffolds modeling complex CNS tissue architecture in vitro and harnessed to develop new clinical approaches to treat neurological diseases, including spinal cord injury.  相似文献   
23.
Mimicking the properties of the extracellular matrix is crucial for developing in vitro models of the physiological microenvironment of living cells. Among other techniques, 3D direct laser writing (DLW) has emerged as a promising technology for realizing tailored 3D scaffolds for cell biology studies. Here, results based on DLW addressing basic biological issues, e.g., cell‐force measurements and selective 3D cell spreading on functionalized structures are reviewed. Continuous future progress in DLW materials engineering and innovative approaches for scaffold fabrication will enable further applications of DLW in applied biomedical research and tissue engineering.  相似文献   
24.
在明确了丝素蛋白作为一种生物相容性较好但力学性能较差的基础上,回顾了近年来国内外学者针对静电纺丝素蛋白改性方法研究,总结出通过物理、化学方法及装置的改变可以对静电纺丝素蛋白进行改性,且改性效果相当明显。提出以共混其他聚合物及制备形状特殊的纳米纤维等物理方法是对再生丝素蛋白纳米纤维支架比较有效的改性方法。  相似文献   
25.
为研究插盘式脚手架的力学性能,进行了节点单向、双向拉伸及单向压缩试验,得到其破坏模式及荷载-位移曲线;现场对单跨两步脚手架体系进行堆载试验,得到各杆件应力.建立三维杆系有限元计算模型,模拟脚手架体系堆载试验,采用弹簧单元模拟插盘式节点,轴向线刚度取节点试验值,通过改变弹簧单元的切向刚度和转角刚度对整个结构进行参数分析,得到与试验结果较吻合的数值分析模型,并与节点铰接的模拟结果进行对比.分析表明:插盘式节点采用弹簧单元可以更好地模拟结构的受力状态,需要考虑弹簧的轴向刚度和切向刚度,但可以忽略转角刚度.  相似文献   
26.
27.
在新型生物陶瓷聚磷酸钙中掺入氟离子,研究氟对聚磷酸钙陶瓷的晶体结构以及化学键的影响。本研究以氟化氨作为掺杂试剂,通过掺杂不同含量的氟,研究其物理性能的变化,如弯曲强度、气孔率等。研究表明,氟元素的引入可以改变聚磷酸钙的晶型和力学性能;掺入一定量氟的聚磷酸钙陶瓷具有在骨组织工程上作为骨修复材料在临床应用的可能性。  相似文献   
28.
Recent decades have seen great advancements in medical research into materials, both natural and synthetic, that facilitate the repair and regeneration of compromised tissues through the delivery and support of cells and/or biomolecules. Biocompatible polymeric materials have become the most heavily investigated materials used for such purposes. Naturally‐occurring and synthetic polymers, including their various composites and blends, have been successful in a range of medical applications, proving to be particularly suitable for tissue engineering (TE) approaches. The increasing advances in polymeric biomaterial research combined with the developments in manufacturing techniques have expanded capabilities in tissue engineering and other medical applications of these materials. This review will present an overview of the major classes of polymeric biomaterials, highlight their key properties, advantages, limitations and discuss their applications. © 2014 Society of Chemical Industry  相似文献   
29.
In this study, biomimetic sodium alginate (SA)/silk fibroin (SF) scaffolds were successfully fabricated by supercritical CO2 technology. The SA/SF scaffolds exhibited an interconnected porous and extracellular matrix (ECM)-like nanofibrous structures. Moreover, the SA microparticles were embedded in the SF scaffolds. Increasing the content of SA microparticles could improve tensile strength and compressive strength of the SF scaffolds and reduce the porosity of the SF scaffolds. The addition of the SA microparticles could also regulate the degradation rate of the SA/SF scaffolds. Furthermore, the results of in vitro biocompatibility evaluation, indicated that the SA/SF scaffolds exhibited no obvious cytotoxicity and higher cell adhesion ability and were more favorable for L929 fibroblasts proliferation than pure SF scaffolds. Therefore, the SA/SF scaffolds with ECM-like nanofibrous and interconnected porous structure have potential application in skin tissue engineering.  相似文献   
30.
《Ceramics International》2019,45(11):13740-13746
A novel concept for the additive manufacturing of three-dimensional glass-ceramic scaffolds, to be used for tissue engineering applications, was based on fine glass powders mixed with a reactive binder, in the form of a commercial silicone. The powders consisted of ‘silica-defective glass’ specifically designed to react, upon firing in air, with the amorphous silica yielded by the binder. By silica incorporation, the glass was intended to reach the composition of an already known CaONa2OB2O3SiO2 system. Silica from the binder provided up to 15 wt% of the total silica. With the same overall formulation, silicone-glass powder mixtures led to nearly the same phase assemblage formed by the reference system, crystallizing into wollastonite (CaSiO3) and Ca-borate (CaB2O4). Samples from silicone-glass powder mixtures exhibited an excellent shape retention after firing, which was later exploited in highly porous reticulated scaffolds, obtained by means of direct ink writing (DIW).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号