首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   81篇
  国内免费   14篇
综合类   16篇
化学工业   264篇
金属工艺   13篇
机械仪表   15篇
建筑科学   48篇
矿业工程   1篇
能源动力   1篇
轻工业   8篇
水利工程   1篇
石油天然气   1篇
无线电   109篇
一般工业技术   195篇
冶金工业   2篇
自动化技术   9篇
  2024年   6篇
  2023年   35篇
  2022年   35篇
  2021年   64篇
  2020年   55篇
  2019年   52篇
  2018年   34篇
  2017年   28篇
  2016年   28篇
  2015年   33篇
  2014年   35篇
  2013年   53篇
  2012年   53篇
  2011年   29篇
  2010年   24篇
  2009年   26篇
  2008年   21篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
排序方式: 共有683条查询结果,搜索用时 0 毫秒
81.
Mucogingival surgery has become a common procedure for soft gingival tissue reparation in dental clinical practice, which mainly relies on autograft or commercial collagen membranes (CM). However, the autograft faces grand challenges in source availability and long-term post-surgery pain management, and the CM is restricted by its poor mechanical properties in an aqueous environment. Here, it is reported that a bio-inspired lamellar chitosan scaffold (LCS) with long range ordered porous structure, manufactured through a bidirectional freezing method, can serve as a promising gingival tissue engineering material. The LCS not only exhibits excellent mechanical properties in the hydrated state but also accelerates vessel formation and soft tissue regeneration in vivo. Most interestingly, the LCS is found to be capable of inducing macrophage differentiation to M2 macrophages, which is thought to play an important role in tissue regeneration. These advantages combined with its easy and low-cost preparation process make the LCS a promising candidate for dental clinical applications.  相似文献   
82.
Replacement of the damaged scar tissue created by a myocardial infarction is the goal of cardiac tissue engineering. However, once the implanted tissue is in place, monitoring its function is difficult and involves indirect methods, while intervention necessarily requires an invasive procedure and available medical attention. To overcome this, methods of integrating electronic components into engineered tissues have been recently presented. These allow for remote monitoring of tissue function as well as intervention through stimulation and controlled drug release. Here, an improved hybrid microelectronic tissue construct capable of withstanding the dynamic environment of the beating heart without compromising electronic or mechanical functionality is reported. While the reported system is enabled to sense the function of the engineered tissue and provide stimulation for pacing, an electroactive polymer on the electronics enables it to release multiple drugs in parallel. It is envisioned that the integration of microelectronic devices into engineered tissues will provide a better way to monitor patient health from afar, as well as provide facile, more exact methods to control the healing process.  相似文献   
83.
84.
Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.  相似文献   
85.
86.
All tissues and organs can be affected by diseases, and treatments for these diseases can cause damage to surrounding healthy tissues and organs. Therefore, treatment is required that involves disease therapy alongside tissue/organ regeneration. The design, construction, and biomedical applications of biomaterial platforms with both disease‐therapeutic and tissue‐regeneration multifunctionalities are in demand, which are herein referred to as theragenerative (abbreviation of therapy and regeneration) biomaterials. Due to the rapid development of theragenerative biomaterials in versatile biomedical applications, this progress report aims to summarize, discuss, and highlight the rational construction of distinctive theragenerative biomaterials with intrinsic therapeutic performance and tissue‐regeneration bioactivity. Based on the intrinsic response to either external physical triggers (e.g., photonic response or magnetic‐field response) or endogenous disease microenvironments (e.g., mild acidity or overexpressed hydrogen peroxide) and tissue‐regeneration bioactivity, these theragenerative biomaterials are extensively explored in various biomedical fields, including bone‐tumor therapy/regeneration, bone antibacterial therapy/regeneration, skin‐tumor therapy/regeneration, skin antibacterial therapy/regeneration, breast‐tumor therapy/adipose‐tissue regeneration, and osteoarticular‐tuberculosis therapy/bone‐tissue regeneration. The challenges faced and future developments of these distinctive theragenerative biomaterials are discussed, as are methods for further promoting their clinical translation.  相似文献   
87.
The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2C MXene wrapped with S‐nitrosothiol (R? SNO)‐grafted mesoporous silica with 3D‐printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)‐triggered photonic hyperthermia of MXene in the NIR‐II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone‐regeneration bioactivity, augmented by sufficient blood supply triggered by on‐demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.  相似文献   
88.
Currently, mesenchymal stem cells (MSCs)‐based therapies for bone regeneration and treatments have gained significant attention in clinical research. Though many chemical and physical cues which influence the osteogenic differentiation of MSCs have been explored, scaffolds combining the benefits of Zn2+ ions and unique nanostructures may become an ideal interface to enhance osteogenic and anti‐infective capabilities simultaneously. In this work, motivated by the enormous advantages of Zn‐based metal–organic framework‐derived nanocarbons, C‐ZnO nanocarbons‐modified fibrous scaffolds for stem cell‐based osteogenic differentiation are constructed. The modified scaffolds show enhanced expression of alkaline phosphatase, bone sialoprotein, vinculin, and a larger cell spreading area. Meanwhile, the caging of ZnO nanoparticles can allow the slow release of Zn2+ ions, which not only activate various signaling pathways to guide osteogenic differentiation but also prevent the potential bacterial infection of implantable scaffolds. Overall, this study may provide new insight for designing stem cell‐based nanostructured fibrous scaffolds with simultaneously enhanced osteogenic and anti‐infective capabilities.  相似文献   
89.
Injectable and malleable hydrogels that combine excellent biocompatibility, physiological stability, and ease of use are highly desirable for biomedical applications. Here, a simple and scalable strategy is reported to make injectable and malleable zwitterionic polycarboxybetaine hydrogels, which are superhydrophilic, nonimmunogenic, and completely devoid of nonspecific interactions. When zwitterionic microgels are reconstructed, the combination of covalent crosslinking inside each microgel and supramolecular interactions between them gives the resulting zwitterionic injectable pellet (ZIP) constructs supportive moduli and tunable viscoelasticity. ZIP constructs can be lyophilized to a sterile powder that fully recovers its strength and elasticity upon rehydration, simplifying storage and formulation. The lyophilized powder can be reconstituted with any aqueous suspension of cells or therapeutics, and rapidly and spontaneously self‐heals into a homogeneous composite construct. This versatile and highly biocompatible platform material shows great promise for many applications, including as an injectable cell culture scaffold that promotes multipotent stem cell expansion and provides oxidative stress protection.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号