首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24279篇
  免费   2540篇
  国内免费   1288篇
电工技术   330篇
综合类   1366篇
化学工业   11874篇
金属工艺   2646篇
机械仪表   402篇
建筑科学   304篇
矿业工程   554篇
能源动力   851篇
轻工业   1590篇
水利工程   40篇
石油天然气   776篇
武器工业   165篇
无线电   686篇
一般工业技术   2737篇
冶金工业   3268篇
原子能技术   312篇
自动化技术   206篇
  2024年   86篇
  2023年   608篇
  2022年   832篇
  2021年   881篇
  2020年   906篇
  2019年   842篇
  2018年   843篇
  2017年   998篇
  2016年   924篇
  2015年   816篇
  2014年   1172篇
  2013年   1526篇
  2012年   1542篇
  2011年   1517篇
  2010年   1164篇
  2009年   1318篇
  2008年   1003篇
  2007年   1428篇
  2006年   1312篇
  2005年   1086篇
  2004年   1021篇
  2003年   964篇
  2002年   782篇
  2001年   659篇
  2000年   608篇
  1999年   494篇
  1998年   374篇
  1997年   346篇
  1996年   291篇
  1995年   246篇
  1994年   238篇
  1993年   184篇
  1992年   183篇
  1991年   190篇
  1990年   166篇
  1989年   140篇
  1988年   56篇
  1987年   48篇
  1986年   37篇
  1985年   65篇
  1984年   59篇
  1983年   36篇
  1982年   42篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1978年   7篇
  1976年   7篇
  1975年   5篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
Sodium ion batteries (SIBs) are considered as a promising alternative to threaten the reign of lithium ion batteries (LIBs) among various next-generation rechargeable energy storage systems, including magnesium ion, metal air, and metal sulfur batteries. Since both sodium and lithium are located in Group 1 of the periodic table, they share similar (electro)chemical properties with regard to ionization pattern, electronegativity, and electronic configuration; thus the vast number of compounds developed from LIBs can provide guidance to design electrode materials for SIBs. However, the larger ionic radius of the sodium cation and unique (de)sodiation processes may also lead to uncertainties in terms of thermodynamic or kinetic properties. Herein, we present the first construction of SIBs based on inorganic fullerene-like (IF) MoS2 nanoparticles. Closed-shell-type structures, represented by C60 fullerene, have largely been neglected for studies of alkali-metal hosting materials due to their inaccessibility for intercalating ions into the inner spaces. However, IF-MoS2, with faceted surfaces, can diffuse sodium ions through the defective channels, thereby allowing reversible sodium ion intercalation/deintercalation. Interestingly, Re-doped MoS2 showed good electrochemical performances with fast kinetics (ca. 74 mA h g−1 at 20 C). N-type doping caused by Re substitution of Mo in IF-MoS2 revealed enhanced electrical conductivity and an increased number of diffusion defect sites. Thus, chemical modification of fullerene-like structures through doping is proven to be a promising synthetic strategy to prepare improved electrodes.  相似文献   
994.
This article describes the crystallization process of polypropylene random copolymer (PPCP) under isothermal conditions in presence of varying amounts of multiwalled carbon nanotubes (MWCNT) ranging from 0.5 to 4.0% w/w. Increase in the crystallization temperature under dynamic conditions confirmed the nucleating behavior of MWCNTs, which was also corroborated by crystallization studies under isothermal conditions. The crystallization kinetics was analyzed using Avrami equation and the parameters such as Avrami exponent, the equilibrium melting temperature and fold surface energy for the crystallization of PPCP chains in nanocomposites were obtained from the calorimetric data in order to determine the effect of MWCNTs on these parameters. Spherulitic growth of PPCP crystals was also investigated as a function of time and MWCNT content using hot stage polarizing microscope. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41734.  相似文献   
995.
A series of bis(4‐fluorophenyl)methyl‐substituted bis(imino)pyridyliron chloride complexes were immobilized on oxide supports. The kinetics of ethylene polymerization by both homogeneous and heterogeneous systems was followed, the catalysts mostly demonstrating high activities. The effect of the ligands nature and reaction conditions on the catalytic activities and molecular weights of the resultant polyethylenes was examined. In contrast to homogeneous systems, the supported iron complexes were found to exhibit high and stable activity upon activation with triisobutyl aluminium, producing high‐molecular‐weight polyethylene with good morphology. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42674.  相似文献   
996.
The influence of molecularly imprinted polymer‐methacrylic acid functionalized β‐cyclodextrin (MIP(MAA‐β‐CD)) morphology on the adsorption behavior studies towards benzylparaben (BzP) was explored. The effects of time, concentration, and temperature towards BzP uptake were extensively evaluated. The adsorption performance of MIP(MAA‐β‐CD) was compared with that on the molecularly imprinted polymer‐methacrylic acid (MIP(MAA)) synthesized without β‐CD. The MIP(MAA‐β‐CD) was synthesized to obtain a spherical and spongy‐porous texture with a broad pore size distribution. The MIP(MAA‐β‐CD) showed fast kinetic and the intra‐particle diffusion model demonstrated a three step (surface and pore) adsorption process. The Koble‐Corrigan isotherm was the most suitable model for data fitting, which indicated that MIP(MAA‐β‐CD) had homogeneous and heterogeneous surfaces. This finding clearly demonstrated that the large uptake and strong affinity of MIP(MAA‐β‐CD) did not only probably result from the monomer‐template interactions, but also due to the morphological MIP(MAA‐β‐CD) structure. In contrary to MIP(MAA‐β‐CD), MIP(MAA) synthesized with uniform morphology and narrow pore size distribution had lower adsorption capacities and its kinetic data fitted the pseudo‐second order diffusion model, indicating a two‐step (surface only) adsorption process. The MIP(MAA) adsorption process followed the Langmuir isotherm model referred to solely homogeneous uptake. The calculated thermodynamic parameters showed that the BzP uptake was exothermic, spontaneous, and physisorption process onto MIPs, which supported the results of kinetics and isotherm adsorption data. This study clearly revealed that the presence of β‐CD improved the morphology of synthesized MIP, and automatically enhanced the adsorption behavior of MIP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42720.  相似文献   
997.
A novel trilayered controlled‐release nitrogen, phosphorous, and potassium (NPK) fertilizer hydrogel was prepared by dipping the NPK fertilizer granules sequentially in 7% w v?1 poly(vinyl alcohol) (PVA) and 2% w v?1 chitosan (CS) solutions and then cross‐linking the CS layer (cross‐CS) via glutaraldehyde vapor deposition. Different NPK fertilizer hydrogels were then synthesized by inverse suspension polymerization of the dried PVA/cross‐CS bilayer‐coated fertilizer granules in various molar ratios of acrylamide (AM) and acrylic acid (AA) monomers, and polymerization with varying molar ratios of ammonium persulfate, N,N,N′,N′‐tetramethylethylenediamine and N,N′‐methylenebisacrylamide (N‐MBA). The water dissolution time of the obtained PVA/cross‐CS/poly (AA‐co‐AM) trilayer‐coated NPK fertilizer hydrogel granules was prolonged, while the water absorbency increased with increasing AA contents, and decreased with increasing N‐MBA contents in the outer poly(AA‐co‐AM) coating. The optimal trilayer‐coated NPK fertilizer hydrogel obtained released 84 ± 18, 63 ± 12, and 36 ± 15% of the N, P, and K nutrients, respectively, after a 30‐day immersion in water. The release phenomena of the N, P, and K nutrients of the fertilizer hydrogel obeyed both the Korsmeyer‐Peppas and Ritger‐Peppas models with a pseudo‐Fickian diffusion mechanism. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41249.  相似文献   
998.
The thermal stability of the resin matrix is an important factor affecting the safety performance of fiber‐reinforced bulletproof composites (FRBCs) during their service period. In this study, two kinds of waterborne polyurethanes based on polyester diol (PEDL218) and isophorone diisocyanate were synthesized; these were used as the matrix of para‐aramid FRBCs. Their thermal stability and thermal decomposition behaviors in a nitrogen atmosphere were studied by dynamic thermogravimetric analysis techniques. The kinetic parameters, including the activation energy (E) and pre‐exponential factor (A), were calculated by the Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Kissinger, and ?atava–?esták methods. The results show that the cationic waterborne polyurethane with quaternary ammonium groups has better thermal stability than the anionic waterborne polyurethane with carboxylate groups. Their nonisothermal decomposition mechanisms were studied, and the kinetic parameters were also calculated; this will offer theoretical reference for the manufacturing and application of FRBCs based on waterborne polyurethane. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42374.  相似文献   
999.
The rate of formation of crystalline phases from liquid and glassy mold powder slags is of foremost importance in the performance of molds used for continuous casting of steel. This study shows how the Induction Period (of Šimon and Kolman) and the Kissinger methods can be combined in a kinetic model to evaluate the isothermal rate of formation of crystalline phases from thermo-analytical data – onset temperature, Ti, peak maximum temperature, Tm, shape index, S, and conversion at peak maximum, xm – collected at various linear heating and cooling rates. The diagram of the extent of isothermal transformation as a function of time calculated for a commercial mold powder, used for casting low carbon steels, shows good agreement with the degree of transformation observed in photomicrographs of glass disks devitrified isothermally, at several temperatures for different times. Additionally, qualitative and quantitative X-ray diffraction results obtained at room-temperature from glass powder samples treated isothermally and quenched also show good accord with the degree of transformation predicted with the kinetic model developed in this work.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号