首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4553篇
  免费   590篇
  国内免费   287篇
电工技术   23篇
综合类   159篇
化学工业   2039篇
金属工艺   565篇
机械仪表   190篇
建筑科学   274篇
矿业工程   115篇
能源动力   173篇
轻工业   136篇
水利工程   64篇
石油天然气   133篇
武器工业   14篇
无线电   314篇
一般工业技术   980篇
冶金工业   169篇
原子能技术   43篇
自动化技术   39篇
  2024年   22篇
  2023年   166篇
  2022年   117篇
  2021年   200篇
  2020年   169篇
  2019年   223篇
  2018年   178篇
  2017年   196篇
  2016年   165篇
  2015年   157篇
  2014年   213篇
  2013年   289篇
  2012年   223篇
  2011年   287篇
  2010年   198篇
  2009年   219篇
  2008年   240篇
  2007年   292篇
  2006年   236篇
  2005年   195篇
  2004年   189篇
  2003年   226篇
  2002年   208篇
  2001年   186篇
  2000年   149篇
  1999年   144篇
  1998年   111篇
  1997年   66篇
  1996年   47篇
  1995年   39篇
  1994年   24篇
  1993年   14篇
  1992年   13篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1951年   1篇
排序方式: 共有5430条查询结果,搜索用时 15 毫秒
101.
Wenlai Feng 《Polymer》2004,45(4):1207-1216
Blends of isotactic polypropylene (iPP) and uncured ethylene-propylene diene rubber (EPDM) of various concentrations were treated by high power ultrasonic waves during extrusion. Die pressure and power consumption were measured. The effects of different gap sizes, blend ratios and number of ultrasonic horns were investigated. The rheological properties, morphology and mechanical properties of the blends with and without ultrasonic treatment were studied. In situ compatibilization of the blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM blends.  相似文献   
102.
Polymer blends of poly(propylene) (PP) and polyacetal (polyoxymethylene, POM) with ethylene vinyl alcohol (EVOH) copolymers were investigated by differential scanning calorimetry (DSC), rheological, tensile, and impact measurements, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The PP–POM–EVOH blends were extruded with a co‐rotating twin‐screw extruder. The ethylene group in the EVOH is partially miscible with PP, whereas the hydroxyl group in the EVOH can form hydrogen bonding with POM. The EVOH tends to reside along the interface, acting as a surfactant to reduce the interfacial tension and to increase the interfacial adhesion between the blends. Results from SEM and mechanical tests indicate that a small quantity of the EVOH copolymer or a smaller vinyl alcohol content in the EVOH copolymer results in a better compatibilized blend in terms of finer phase domains and better mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1471–1477, 2003  相似文献   
103.
用新设计的单片反应器制备积炭催化剂试样,与动态法测定催化剂微孔有效扩散系数的装置相配合,并采用以水为吸附介质的动态毛细凝聚法和毛细上升法测定积炭催化剂压片的孔隙率,实现了积炭催化剂粒内有效扩散系数的“拟原位”测定要求,避免了催化剂颗粒反应积炭后再研磨、压片对有效扩散系数测定带来的假象。本文利用提出的“拟原位”方法得到了ZSM-5沸石催化剂上乙苯/乙烯烷基化过程中反应-失活全过程的有效扩散系数变化曲线。  相似文献   
104.
Polystyrene (PS) blocks in poly(styrene-b-isobutylene-b-styrene) (PS-PIB-PS) block copolymers were partially sulfonated and the acid groups converted to Na+SO3 groups to create ionomers. Then, dimethylacetamide was used to selectively swell the ionic PS domains and the swollen films were exposed to sol-gel reactive tetraethylorthosilicate solutions. (EtO)4−xSi(OH)x monomers then permeated films so that sol-gel reactions occurred within/around the ionic PS domains. Environmental scanning electron microscopy/energy dispersive X-ray spectroscopy investigations showed that silicate structures can be incorporated within the interior of the ionomer films. Differential scanning calorimetry studies indicated that there is no variance in the PIB block Tg with respect to ionomer formation, or with respect to silicate loading of the ionomer at low levels, which suggests that the silicate component does not reside in the PIB phase. 23Na solid state NMR spectroscopy detected isolated Na+SO3 groups as well as aggregated SO3Na+ ion pairs for ‘as cast’ and ‘dry’ non-silicate containing ionomer samples. In a hydrated sample, almost all Na+ ions were solvent-separated. AFM analysis showed that phase separation exists, but that the degree of order is significantly less than that for hybrids based on the corresponding benzyltrimethylammonium ionomer. This frustrated morphology was also seen in the results of small angle X-ray scattering experiments. Given the scale of organic/inorganic heterogeneity, these hybrids are properly classified as nanocomposites.  相似文献   
105.
The compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphological and mechanical properties of virgin and recycled polypropylene (PP)/high‐impact polystyrene (HIPS) blends was studied, with the properties optimized for rigid composite films. The components of the blend were obtained from municipal plastic waste, PP being acquired from mineral water bottles (PPb) and HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends with three different weight ratios of PPb and HIPS (6:1, 6:2, and 6:3) were prepared, and three different concentrations of SEBS (5, 6, and 7 wt %) were used for investigations of its compatibilizing effect. Scanning electron microscopy showed that SEBS reduced the diameter of dispersed HIPS particles in the globular and fibril shapes and improved the adhesion between the disperse phase and the matrix. However, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. An adequate composition of PP/HIPS, for both virgin and recycled blends, for applications in composite films with characteristics similar to those of synthetic paper was obtained with a minimal amount of SEBS and a maximal HIPS/PP ratio in the range of concentrations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2861–2867, 2003  相似文献   
106.
采用原位插层聚合法,制备了蒙脱土含量较高的共聚酯/蒙脱土纳米复合材料,意在做母料使用,含有该母料的聚合物复合材料的染色性能、吸湿浸润性能、抗静电性能及抗紫外性能等都有所改善。阐述了合适的共聚酯/蒙脱土纳米复合材料的制备工艺,讨论了制备过程中的影响因素,结果发现:在采用酯交换-缩聚反应釜进行原位插层聚合制备共聚酯/蒙脱土纳米复合材料的过程中,蒙脱土在缩聚釜中加入更符合生产实际;缩聚反应的实际过程证明了蒙脱土中含有的金属离子对缩聚反应有催化作用;另外,控制聚合的最终温度不超过278℃。最后,对共聚酯/蒙脱土纳米复合材料的结构进行了表征。  相似文献   
107.
Lead-based ferroelectric materials are extensively employed in industrial applications and everyday life due to their excellent ferroelectric and piezoelectric performance. Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) is a typical binary relaxor ferroelectric system, whose refined structure and piezoelectric properties have not been systematically investigated. In this study, evolution of electric field-based crystal structure and variation of ferroelectric, piezoelectric, as well as dielectric properties with composition and temperature of (1 − x)PNN-xPT (0.32 ≤ x ≤ 0.36) ceramics were studied in full detail. The optimal performance is obtained at 0.66PNN-0.34PT with maximum piezoelectric coefficient d33 of 560 pC/N and large dielectric constant of 28 684. In situ high-energy synchrotron diffraction was employed to determine structural origins of enhanced properties of 0.66PNN-0.34PT. Interestingly, crystal structure of poled 0.66PNN-0.34PT ceramic is determined to be single monoclinic phase. Furthermore, both its lattice parameters and volume variation present butterfly shape under electric field. It is demonstrated that macroscopic strain of 0.66PNN-0.34PT stems mainly from intrinsic structure. The present study provides evidence for the relationship between microstructure and macroscopic properties, which is beneficial to the design of new materials with piezoelectric properties.  相似文献   
108.
To further improve the mechanical performance and reduce the percolation threshold by controlling microstructures, Al2O3-TiC composites containing 0-20 vol% TiC were fabricated via in situ reaction synthesis. Graphite (ATC) and carbon nanotubes (ATCT) were used as carbon sources. The composites were also fabricated via a conventional process using a TiC starting powder (AT). X-ray diffraction analysis and scanning electron microscopy observation results indicated successful fabrication of the composites with various microstructures. TiC particles in ATCT were completely dispersed at grain boundaries, whereas in ATC and AT, these particles were either intragranular or intergranular dispersed. The composites could be listed as follows, ATCT > ATC > AT, that is, in descending order of the reinforcing flexural strength and fracture toughness. The nanoindentation measurement indicated the optimum hardening effect of ATCT. The ATCT composite also exhibited the highest fracture toughness, which was 49% higher than that of the monolithic Al2O3. Crack deflection was considered as the main toughening mechanism while crack bridging behavior also occurred in ATCT. For a given TiC content, ATCT exhibited the lowest electrical resistivity, owing mainly to the complete grain-boundary dispersion of the relatively large TiC particles. The similarity of the Al2O3 grain size and TiC particle size of ATCT contributed to the lowest percolation threshold achieved (11.2%), which (to date) is the lowest value that has been reported for the Al2O3-TiC system.  相似文献   
109.
In this work, biocomposites made of polyhydroxyalkanoates (PHA) with natural fibers were produced via compression molding. In particular, polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV) were reinforced with 20 wt% of agave fibers. Different compatibilization strategies were investigated to improve the fiber-matrix interaction: fiber surface treatment in PHA solution, fiber surface treatment in maleated PHA solution, fiber propionylation, and extrusion with maleated PHA. The biocomposites were characterized in terms of morphology, mechanical properties, water absorption, and biodegradability by CO2 production tracking. In general, fiber propionylation was the best strategy for mechanical properties enhancement and water uptake decreasing. Biocomposites with propionylated fibers showed improved flexural strength (170% for PHB and 84% for PHBV). The flexural modulus was also enhanced with propionylated fibers up to 19% and 18% compared to uncompatibilized biocomposites (PHB and PHBV, respectively). Tensile strength increased by 16% (PHB) and 14% (PHBV), and the water absorption was reduced using propionylated fibers going from 6.6% to 4.4% compared with biocomposites with untreated fibers. Most importantly, the impact strength was also improved for all biocomposites by up to 96% compared with the neat PHA matrices. Finally, it was found that the compatibilization did not negatively modify the PHA biodegradability.  相似文献   
110.
A core-shell modifier with the cross-linked acrylate and silicone copolymer as the core and polymethyl methacrylate (PMMA) as the shell (PASi-g-PMMA) was used to toughen the brittle polylactide (PLA). In addition, the copolymer of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) (MG) was utilized to further enhance the modification efficiency of the PASi-g-PMMA. The MG copolymer played the double roles of compatibilizer and chain extender, which not only improved the interfacial adhesion between the PLA and PASi-g-PMMA particles, but also increased the molecular weight and chain entanglement of the PLA. Compared with the PASi-g-PMMA toughened PLA blend, the PLA/PASi-g-PMMA/MG blends showed much higher heat-resistance, melt strength, transparency, toughness and stiffness balance. When the PASi-g-PMMA content was 20 wt%, 20 wt% MG increased the glass transition temperature (Tg), complex viscosity (η*), transparency, impact and tensile strength of PLA/PASi-g-PMMA blend from 60.1°C, 1.9 × 103 Pa·s, 76.1%, 748 J/m and 37 MPa to 71.5°C, 0.5 × 104 Pa·s, 78.4%, 860 J/m and 45 MPa for the PLA/PASi-g-PMMA/MG blend. This research provided a facile and practical method to overcome the shortcomings of the PLA and promoted its application in broader fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号