首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51230篇
  免费   3867篇
  国内免费   2941篇
电工技术   1191篇
综合类   4200篇
化学工业   6937篇
金属工艺   5797篇
机械仪表   3803篇
建筑科学   6284篇
矿业工程   2616篇
能源动力   2080篇
轻工业   2803篇
水利工程   1973篇
石油天然气   2418篇
武器工业   350篇
无线电   1990篇
一般工业技术   8969篇
冶金工业   3265篇
原子能技术   496篇
自动化技术   2866篇
  2024年   215篇
  2023年   1483篇
  2022年   1741篇
  2021年   2522篇
  2020年   2097篇
  2019年   1955篇
  2018年   1825篇
  2017年   2042篇
  2016年   2299篇
  2015年   2368篇
  2014年   3344篇
  2013年   4962篇
  2012年   3010篇
  2011年   3062篇
  2010年   2425篇
  2009年   2408篇
  2008年   2193篇
  2007年   2585篇
  2006年   2254篇
  2005年   1974篇
  2004年   1699篇
  2003年   1428篇
  2002年   1275篇
  2001年   1104篇
  2000年   953篇
  1999年   790篇
  1998年   676篇
  1997年   590篇
  1996年   501篇
  1995年   406篇
  1994年   354篇
  1993年   281篇
  1992年   255篇
  1991年   172篇
  1990年   162篇
  1989年   152篇
  1988年   95篇
  1987年   71篇
  1986年   45篇
  1985年   40篇
  1984年   52篇
  1983年   20篇
  1982年   29篇
  1981年   11篇
  1980年   17篇
  1979年   26篇
  1964年   10篇
  1961年   6篇
  1959年   8篇
  1955年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
It is difficult to obtain an accurate mathematical model in electro-hydraulic servo control system, due to the nonlinear factors such as dead zone, saturation, flow coefficient, and friction. Hence, a parameter identification algorithm, combining recursive least squares (RLS) with modified nonlinear particle swarm optimization (NPSO) algorithm, is proposed. On this basis, another improved NPSO algorithm is also put forward, aiming at searching for the optimal proportional–integral (PI) controller gain of the nonlinear hydraulic system while giving comprehensive consideration to the system performance indexes. The system identification experiments and position tracking control are conducted, respectively. As indicated by the comparison with the least squares (LS), RLS, PSO, and RLS–LPSO results, the proposed method shows higher identification and control accuracy.  相似文献   
992.
This paper proposes a new single-phase direct step-up ac–ac converter by modifying the p-type impedance source. It provides a high boost factor as well as high efficiency, while only six parts are required to design it, involving just two bidirectional power switches. A safe commutation method has been applied to power switches to make the converter snubber-free and high efficient. Input and output harmonic filters are no longer required since input and output currents variate continuously with small ripple and low total harmonic distortion (THD). The proposed topology only modulates the output voltage amplitude, not the phase and frequency, so the output frequency is identical to the input frequency and constant. Thus, it can be utilized in step-up conversion applications, like inductive power transmission from low ac voltage sources. Input and output have the same ground, which is a good protective feature. In this paper, the operating principle of the converter is demonstrated. Experimental results have been represented to evaluate the performance of the converter. For this purpose, an experimental prototype has been fabricated. Results are investigated and compared with other previous step-up ac–ac converters. Results confirm the theory, operating principle, and performance of the converter.  相似文献   
993.
The rational design and construction of efficient and inexpensive bifunctional oxygen electrocatalysts are highly desirable for the development of rechargeable Zn–air batteries (ZABs). Although single-atom Fe sites anchored on N-doped carbon catalysts (Fe1/NC) ensure high oxygen reduction reaction activity, their unitary atomically dispersed active center faces difficult condition in catalyzing oxygen evolution reaction simultaneously. Herein, a composite catalyst containing heterointerface between Fe1/NC and selenides ((Fe,Co)Se2) is constructed. The obtained (Fe,Co)Se2@Fe1/NC exhibits extremely narrow potential gap of 0.616 V and remarkable stability in alkaline media, outperforming the benchmark catalysts (Pt/C+RuO2: 0.720 V). Experimental results and density functional theory calculations reveal that heterointerface between Fe1/NC and (Fe,Co)Se2 accelerates the electron transfer and provides more moderate adsorption sites, which endow (Fe,Co)Se2@Fe1/NC with extremely high bifunctional oxygen catalytic activity. This study not only provides a superior bifunctional catalyst for ZABs, but also enriches the application of single-atom catalysts in multifunctional energy storage and conversion devices.  相似文献   
994.
Organic redox-active materials are promising electrode candidates for lithium-ion batteries by virtue of their designable structure and cost-effectiveness. However, their poor electrical conductivity and high solubility in organic electrolytes limit the device's performance and practical applications. Herein, the π-conjugated nitrogen-containing heteroaromatic molecule hexaazatriphenylene (HATN) is strategically embedded with redox-active centers in the skeleton of a Cu-based 2D conductive metal–organic framework (2D c-MOF) to optimize the lithium (Li) storage performance of organic electrodes, which delivers improved specific capacity (763 mAh g−1 at 300 mA g−1), long-term cycling stability (≈90% capacity retention after 600 cycles at 300 mA g−1), and excellent rate performance. The correlation of experimental and computational results confirms that this high Li storage performance derives from the maximum number of active sites (CN sites in the HATN unit and CO sites in the CuO4 unit), favorable electrical conductivity, and efficient mass transfer channels. This strategy of integrating multiple redox-active moieties into the 2D c-MOF opens up a new avenue for the design of high-performance electrode materials.  相似文献   
995.
MXene materials emerge as promising candidates for energy harvesting and storage application. In this study, the effect of the surface chemistry on the work function of MXenes, which determines the performance of MXene-based triboelectric nanogenerator (TENG), is elucidated. First-principles calculations reveal that the surface functional group greatly influences MXene work function:  OH termination reduces the work function with respect to that of bare surface, while  F and  Cl increase it. Then, work functions are experimentally determined by Kelvin probe force microscopy. The MXene prepared by gentle etching at 40 °C for 48 h (GE40/48) has the largest work function. Furthermore, an electron-cloud potential-well model is established to explain the mechanism of electron emission-dominated charge transfer and assemble a triboelectric device to verify experimentally its conclusions. It is found that GE40/48 has the best performance with a 281 V open-circuit voltage, 9.7 µA short-current current, and storing 1.019 µC of charge, which is consistent with the model. Last, a patterned TENG is demonstrated for self-powered human–machine interaction application. This finding enhances the understanding of the inherent mechanism between the surface structure and the output performance of MXene-based TENG, which can be applied to other TENG based on 2D materials.  相似文献   
996.
Comprehensive analyses of the atomic structure using advanced analytical transmission electron microscopy-based methods combined with atom probe tomography confirm the presence of distinct glass–glass interfaces in a columnar Cu-Zr nanoglass synthesized by magnetron sputtering. These analyses provide first-time in-depth characterization of sputtered film nanoglasses and indicate that glass–glass interfaces indeed present an amorphous phase with reduced mass density as compared to the neighboring amorphous regions. Moreover, dedicated analyses of the diffusion kinetics by time-of-flight secondary ion mass spectroscopy (ToF SIMS) prove significantly enhanced diffusivity, suggesting fast transport along the low density glass–glass interfaces. The present results further indicate that sputter deposition is a feasible technique for reliable production of nanoglasses and that some of the concepts proposed for this new class of glassy materials are applicable.  相似文献   
997.
Unexpected, yet useful functionalities emerge when two or more materials merge coherently. Artificial oxide superlattices realize atomic and crystal structures that are not available in nature, thus providing controllable correlated quantum phenomena. This review focuses on 4d and 5d perovskite oxide superlattices, in which the spin–orbit coupling plays a significant role compared with conventional 3d oxide superlattices. Modulations in crystal structures with octahedral distortion, phonon engineering, electronic structures, spin orderings, and dimensionality control are discussed for 4d oxide superlattices. Atomic and magnetic structures, Jeff = 1/2 pseudospin and charge fluctuations, and the integration of topology and correlation are discussed for 5d oxide superlattices. This review provides insights into how correlated quantum phenomena arise from the deliberate design of superlattice structures that give birth to novel functionalities.  相似文献   
998.
The simultaneous engineering of sulfur cathode and Li anode is critical for electrolyte-starved high energy density Li–S batteries, in which slow electrochemical conversions and side chemical reactions of dead sulfur are found to be the determining factors in limiting the sulfur utilization, corresponding to the poor reversible capacity of Li–S batteries. Herein, this work challenges the conventional wisdom of heterogeneous and homogeneous catalyses in Li–S batteries and proposes the concept of integrated–heterogeneous catalysis to simultaneously scavenge the dead sulfur and dead lithium to compensate the active materials sulfur and lithium loss simply through adding a small amount of ZnI2 into conventional electrolyte of Li–S cells. Regulated by integrated–heterogeneous catalysis, over 1300 h of cycling is realized in Li||Li symmetric cells, revealing superb compatibility of the ZnI2-incorporated electrolyte with lithium metal. Meanwhile, the ZnI2 shows good prospects in promoting the reutilization of dead sulfur in both theoretical calculation and experimental tests. Practically, a high initial capacity of 1170 mAh g−1 with decent cycling stability is achieved in electrolyte-starved and high-loading pouch cells (5.0 µL mg−1 and 5.2 mg cm−2).  相似文献   
999.
This paper presents a literature review on the different aspects of task allocation and assignment problems in human–robot collaboration (HRC) tasks in industrial assembly environments. In future advanced industrial environments, robots and humans are expected to share the same workspace and collaborate to efficiently achieve shared goals. Difficulty- and complexity-aware HRC assembly is necessary for human-centric manufacturing, which is a goal of Industry 5.0. Therefore, the objective of this study is to clarify the definitions of difficulty and complexity used to encourage effective collaboration between humans and robots to leverage the adaptability of humans and the autonomy of robots. To achieve this goal, a systematic review of the following relevant databases for computer science was performed: IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, and ASME Digital Collection. The results extracted from 74 peer-reviewed research articles published until July 2022 were summarized and categorized into four taxonomies for 145 difficulty and complexity definitions from the perspectives of (1) definition-use objectives, (2) evaluation objectives, (3) evaluation factors, and (4) evaluation variables. Next, existing definitions were primarily classified according to the following two criteria to identify potential future studies on the formulation of new definitions for human-centric manufacturing: (1) agent specificity and (2) common aspects in manual and robotic assemblies.  相似文献   
1000.
Mg-Sr alloys are promising to fabricate orthopedic implants. The alloying of rare earth elements such as Gd may improve the comprehensive mechanical properties of Mg-Sr alloys. The information on the phase diagram and the microstructure development are required to design chemical composition and microstructure of Gd alloyed Mg-Sr alloys. The phase equilibria and the microstructure development in Mg-rich Mg-Gd-Sr alloys (Gd, Sr < 30 at. %) are experimentally investigated via phase identification, chemical analysis, and microstructure observation with respect to the annealed ternary alloys. The onset temperatures of liquid formation are measured by differential scanning calorimetry. A thermodynamic database of the Mg-rich Mg–Gd–Sr ternary system is developed for the first time via CALPHAD (CALculation of PHAse Diagram) approach assisted by First-Principles calculations. The thermodynamic calculations with the developed database enable a well reproduction of the experimental findings and the physical-metallurgical understanding of the microstructure formation in solidification and annealing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号