首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15654篇
  免费   1627篇
  国内免费   1024篇
电工技术   760篇
综合类   758篇
化学工业   4867篇
金属工艺   1840篇
机械仪表   317篇
建筑科学   191篇
矿业工程   221篇
能源动力   2772篇
轻工业   752篇
水利工程   57篇
石油天然气   1517篇
武器工业   77篇
无线电   626篇
一般工业技术   2044篇
冶金工业   892篇
原子能技术   449篇
自动化技术   165篇
  2024年   66篇
  2023年   630篇
  2022年   774篇
  2021年   755篇
  2020年   705篇
  2019年   626篇
  2018年   499篇
  2017年   524篇
  2016年   518篇
  2015年   492篇
  2014年   828篇
  2013年   980篇
  2012年   1025篇
  2011年   1050篇
  2010年   816篇
  2009年   827篇
  2008年   667篇
  2007年   865篇
  2006年   834篇
  2005年   717篇
  2004年   674篇
  2003年   561篇
  2002年   516篇
  2001年   435篇
  2000年   334篇
  1999年   267篇
  1998年   225篇
  1997年   167篇
  1996年   152篇
  1995年   146篇
  1994年   123篇
  1993年   88篇
  1992年   62篇
  1991年   56篇
  1990年   75篇
  1989年   45篇
  1988年   35篇
  1987年   23篇
  1986年   11篇
  1985年   23篇
  1984年   31篇
  1983年   16篇
  1982年   12篇
  1981年   5篇
  1979年   5篇
  1974年   2篇
  1970年   1篇
  1969年   1篇
  1959年   2篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
氢工质在新能源与动力、航天推进、化工材料等领域有着广泛应用。通过开展高温氢工质热力学与输运性质研究,建立了原子态氢、分子态氢、热解平衡态氢的热物理性质计算模型,开发了热物性计算程序Prop_H_H2,适用范围为温度100~3 500 K、压力104~5×107 Pa 。验证表明,Prop_H_H2在适用范围内计算氢工质的物性参数合理可靠,在温度200~3 000 K、压力104~107 Pa范围内,程序预测值更加准确,相对偏差在±5%左右。本研究可为氢工质相关的航天推进、应用物理学、能源动力等行业的科研和应用提供支持借鉴。  相似文献   
23.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
24.
概述了氢的主要工业生产方法和实际应用,详细介绍了氯碱氢三级脱水工艺过程,并运用在线分析手段,准确显示了干燥过程中的氯碱氢水分含量变化规律。  相似文献   
25.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
26.
A large-scale point to point hydrogen transport is one strategy for a prospective energy import scenario for certain countries. The case for a hydrogen transport from Australia to Japan has been addressed in several studies. However, most studies lack transparency and detailed insights into the made assumptions thus a fair evaluation of different transport pathways is challenging. To address this issue, we developed a model where a large-scale point to point hydrogen transport of liquid hydrogen is compared with the transport via liquid organic hydrogen carrier (LOHC), namely via methyl cyclohexane and hydrogenated dibenzyl toluene. We analyzed, where energy is required along the different pathways, where hydrogen losses do occur and how the costs are put together. Furthermore, the influence of hydrogen feed costs is also considered. For hydrogen production costs of 5 €2018/kgH2 the total delivery costs are in the range of 6.40– 8.10 €2018/kgH2.  相似文献   
27.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
28.
29.
To improve the electrochemical properties of rare-earth–Mg–Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the ...  相似文献   
30.
Based on that hydrogen energy is widely used in fuel cells, we focus our interests on the design and research of new complexes that catalyze the reaction in both directions, such as hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs). A highly efficient catalyst for both hydrogen evolution and oxidation, based on a nickel(II) complex, [Ni-en-P2](ClO4)2, has been designed and provided by the reaction of Ni(ClO4)2 with N,N′-bis[o-(diphenylphosphino)benzylidene]ethylenediamine (en-P2) in our group. Its structure has been determined by X-ray diffraction. [Ni-en-P2](ClO4)2 can electro-catalyze hydrogen evolution both from acetic acid and a neutral buffer (pH 7.0) with a turnover frequency (TOF) of 204 and 1327 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) under an overpotential (OP) of 914.6 mV and 836.6 mV, respectively. [Ni-en-P2](ClO4)2 also can electro-catalyze hydrogen oxidation with a TOF of 111.7 s−1 under an OP of 330 mV. The results can be attributed to that [NiII-en-P2](ClO4)2 has three good reversible redox waves at 1.01 (NiIII/II), −0.79 (NiII/I) and −1.38 V (NiI/0) versus Fc+/0, respectively. We hope these findings can afford a new method for the design of electrocatalysts for both H2 evolution and H2 oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号