首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6194篇
  免费   648篇
  国内免费   306篇
电工技术   31篇
综合类   99篇
化学工业   3689篇
金属工艺   210篇
机械仪表   216篇
建筑科学   116篇
矿业工程   1篇
能源动力   3篇
轻工业   654篇
水利工程   1篇
石油天然气   4篇
武器工业   1篇
无线电   481篇
一般工业技术   800篇
冶金工业   257篇
原子能技术   153篇
自动化技术   432篇
  2024年   32篇
  2023年   263篇
  2022年   1319篇
  2021年   1235篇
  2020年   431篇
  2019年   357篇
  2018年   235篇
  2017年   222篇
  2016年   310篇
  2015年   276篇
  2014年   332篇
  2013年   416篇
  2012年   284篇
  2011年   282篇
  2010年   201篇
  2009年   167篇
  2008年   140篇
  2007年   123篇
  2006年   82篇
  2005年   88篇
  2004年   66篇
  2003年   43篇
  2002年   55篇
  2001年   44篇
  2000年   19篇
  1999年   14篇
  1998年   18篇
  1997年   16篇
  1996年   16篇
  1995年   13篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1956年   1篇
排序方式: 共有7148条查询结果,搜索用时 15 毫秒
51.
Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture. Ten thousand (10000) microscopic images are taken to test the classification performance of the proposed PMS with the HVE method. The microscopic images obtained from the colon tissues are classified into ACA or benign by the proposed PMS. Results prove that the proposed PMS has ~8% performance improvement over the architecture without using the HVE method. The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2% of sensitivity and 99.4% of specificity. The overall accuracy of the proposed PMS is 99.3%, and without using the HVE method, it is only 91.3%.  相似文献   
52.
Breast cancer is one of the deadly diseases prevailing in women. Earlier detection and diagnosis might prevent the death rate. Effective diagnosis of breast cancer remains a significant challenge, and early diagnosis is essential to avoid the most severe manifestations of the disease. The existing systems have computational complexity and classification accuracy problems over various breast cancer databases. In order to overcome the above-mentioned issues, this work introduces an efficient classification and segmentation process. Hence, there is a requirement for developing a fully automatic methodology for screening the cancer regions. This paper develops a fully automated method for breast cancer detection and segmentation utilizing Adaptive Neuro Fuzzy Inference System (ANFIS) classification technique. This proposed technique comprises preprocessing, feature extraction, classifications, and segmentation stages. Here, the wavelet-based enhancement method has been employed as the preprocessing method. The texture and statistical features have been extracted from the enhanced image. Then, the ANFIS classification algorithm is used to classify the mammogram image into normal, benign, and malignant cases. Then, morphological processing is performed on malignant mammogram images to segment cancer regions. Performance analysis and comparisons are made with conventional methods. The experimental result proves that the proposed ANFIS algorithm provides better classification performance in terms of higher accuracy than the existing algorithms.  相似文献   
53.
54.
The most common form of cancer for women is breast cancer. Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer. Thus, an automated computerized system with high accuracy is needed. In this study, an efficient Deep Learning Architecture (DLA) with a Support Vector Machine (SVM) is designed for breast cancer diagnosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual Geometric Group (VGG) architecture with 16 layers is employed in this study as it uses the small size of 3 × 3 convolution filters that reduces system complexity. The softmax layer in VGG assumes that the training samples belong to exactly only one class, which is not valid in a real situation, such as in medical image diagnosis. To overcome this situation, SVM is employed instead of the softmax layer in VGG. Data augmentation is also employed as DLA usually requires a large number of samples. VGG model with different SVM kernels is built to classify the mammograms. Results show that the VGG-SVM model has good potential for the classification of Mammographic Image Analysis Society (MIAS) database images with an accuracy of 98.67%, sensitivity of 99.32%, and specificity of 98.34%.  相似文献   
55.
Cancer diagnosis and patient monitoring require sensitive and simultaneous measurement of multiple cancer biomarkers considering that single biomarker analysis present inadequate information on the underlying biological transformations. Thus, development of sensitive and selective assays for multiple biomarker detection might improve clinical diagnosis and expedite the treatment process. Herein, a microfluidic platform for the rapid, sensitive, and parallel detection of multiple cancer‐specific protein biomarkers from complex biological samples is presented. This approach utilizes alternating current electrohydrodynamic‐induced surface shear forces that provide exquisite control over fluid flow thereby enhancing target–sensor interactions and minimizing non‐specific binding. Further, the use of surface‐enhanced Raman scattering‐based spectral encoding with individual barcodes for different targets enables specific and simultaneous detection of captured protein biomarkers. Using this approach, the specific and sensitive detection of clinically relevant biomarkers including human epidermal growth factor receptor 2 (HER2); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor; and Mucin 16, cell surface associated (MUC16) at concentrations as low as 10 fg mL?1 in patient serum is demonstrated. Successful target detection from patient samples further demonstrates the potential of this current approach for the clinical diagnosis, which envisages a clinical translation for a rapid and sensitive appraisal of clinical samples in cancer diagnostics.  相似文献   
56.
57.
Context: Prostate cancer (PCa) is the second most-frequently diagnosed cancer in men. Cabazitaxel was approved for the treatment of patients with hormone-refractory metastatic prostate cancer previously treated with a docetaxel-containing regimen.

Objective: In this study, bombesin (BN), a ligand reported to specifically target GRP overexpressing prostate tumor, was applied for the construction of lipid-polymer hybrid nanoparticles (LPNs), and used for the targeted delivery of cabazitaxel (CAB) to prostate cancer.

Methods: BN-polyethylene glycol-1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (BN-PEG-DSPE) was synthesized. CAB loaded, BN-PEG-DSPE contained LPNs (BN-CAB-LPNs) were prepared. Their particle size, zeta potential and drug encapsulation efficiency (EE) were evaluated. In vitro cytotoxicity study of BN-CAB-LPNs was tested in LNCaP human prostatic cancer cell line (LNCaP cells). In vivo anti-tumor efficacy of the carriers was evaluated on mice bearing prostate cancer model.

Results: The optimum BN-CAB-LPNs formulations had a particle size of 184.9?nm and a 26.5?mV positive surface charge. The growth of LNCaP cells in vitro was obviously inhibited. BN-CAB-LPNs also displayed better anti-tumor activity than the other formulations in vivo.

Conclusion: The results demonstrated that BN-CAB-LPNs can sufficiently deliver CAB to the cancer cells and enhance the anti-tumor capacity. Thus, BN-CAB-LPNs can be proved to be a superior nanomedicine which can achieve better therapeutic efficacy of prostate tumor.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号