首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31518篇
  免费   2747篇
  国内免费   1969篇
电工技术   3169篇
综合类   2158篇
化学工业   12800篇
金属工艺   500篇
机械仪表   746篇
建筑科学   1771篇
矿业工程   925篇
能源动力   2685篇
轻工业   1802篇
水利工程   877篇
石油天然气   2154篇
武器工业   42篇
无线电   464篇
一般工业技术   1333篇
冶金工业   931篇
原子能技术   2969篇
自动化技术   908篇
  2024年   82篇
  2023年   385篇
  2022年   656篇
  2021年   814篇
  2020年   880篇
  2019年   796篇
  2018年   754篇
  2017年   885篇
  2016年   1047篇
  2015年   955篇
  2014年   1697篇
  2013年   2503篇
  2012年   2003篇
  2011年   2143篇
  2010年   1778篇
  2009年   1786篇
  2008年   1722篇
  2007年   1945篇
  2006年   1887篇
  2005年   1664篇
  2004年   1413篇
  2003年   1350篇
  2002年   1158篇
  2001年   992篇
  2000年   774篇
  1999年   716篇
  1998年   551篇
  1997年   453篇
  1996年   401篇
  1995年   369篇
  1994年   279篇
  1993年   221篇
  1992年   198篇
  1991年   193篇
  1990年   158篇
  1989年   119篇
  1988年   82篇
  1987年   114篇
  1986年   64篇
  1985年   65篇
  1984年   42篇
  1983年   25篇
  1982年   21篇
  1981年   11篇
  1980年   8篇
  1977年   4篇
  1959年   33篇
  1957年   4篇
  1955年   4篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
101.
Combined straw–bitumen pellets have been proposed as an alternative fuel. An interesting finding is the potentiality of straw ash constituents to retain sulphur as bitumen that has relatively high sulphur content. The aim of the present work is to enhance sulphur self-retention to directly meet the environmental regulations by building-in CaO in the pellet instead of feeding sorbent separately. CaO powder has been mixed with the pellet constituents during production processes.  相似文献   
102.
针对反应堆堆芯围筒热流固耦合问题,采用三维有限元法研究堆芯围筒的热变形.考察ANSYS的三维实体热单元SOLID 70,三维实体单元SOLID 45,三维表面热效应单元SURF 152和三维热-流耦合管单元FLUID 116等单元类型的特点和实用性.建立堆芯围筒、吊篮和冷却剂的温度分析有限元模型:堆芯围筒和吊篮采用SOLID 70,结构表面与冷却剂的对流传热表面采用SURF152,堆芯围筒与吊篮之间冷却剂采用FLUID 116.采用SOLID 45建立堆芯围筒有限元模型,根据得到的堆芯围筒、吊篮和冷却剂的温度场结果分析堆芯围筒热变形.结果表明,在考虑堆芯围筒及吊篮固体和流体的交叉耦合的基础上,采用三维有限元法能比较客观地模拟反应堆堆芯处的复杂运行环境.  相似文献   
103.
Process monitoring in additive manufacturing may allow components to be certified cheaply and rapidly and opens the possibility of healing defects, if detected. Here, neural networks (NNs) and convolutional neural networks (CNNs) are trained to detect flaws in layerwise images of a build, using labeled XCT data as a ground truth. Multiple images were recorded after each layer before and after recoating with various lighting conditions. Classifying networks were given a single image or multiple images of various lighting conditions for training and testing. CNNs demonstrated significantly better performance than NNs across all tasks. Furthermore, CNNs demonstrated improved generalizability, i.e., the ability to generalize to more diverse data than either the training or validation data sets. Specifically, CNNs trained on high-resolution layerwise images from one build showed minimal loss in performance when applied to data from an independent build, whereas the performance of the NNs degraded significantly. CNN accuracy was also demonstrated to be a function of flaw size, suggesting that smaller flaws may be produced by mechanisms that do not alter the surface morphology of the build plate. CNNs demonstrated accuracies of 93.5 % on large (>200 μm) flaws when testing and training on components from the same build and accuracies of 87.3 % when testing on a previously unseen build. Finally, evidence linking the formation of large lack-of-fusion defects to the presence of process ejecta is presented.  相似文献   
104.
In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) has been used to model local scouring depth and pattern scouring around concave and convex arch shaped circular bed sills. The experimental part of this research study includes seven sets of laboratory test cases which were performed in an experimental flume under different flow conditions. A data set consists of 2754 data points of scouring depth were collected to use in the ANFIS model. The ratio of arch diameter, D, to flume width, W, is used as a non dimensional variables in all test cases. The results from ANFIS model were compared with the results of ANN model obtained by Homayoon et al. [24] and previously presented models. The results indicated that for D/W equal to 1 and 1.2, the ANFIS models produced a good performance for convex and concave bed sills. As a result, the ANFIS models can be used as an alternative to ANN for estimation of scour depth and scour pattern around a concave bed sill installed with a bridge pier.  相似文献   
105.
High-field designs could reduce the cost and complexity of tokamak reactors. Moreover, the certainty of achieving required plasma performance could be increased. Strong Ohmic heating could eliminate or significantly decrease auxiliary heating power requirements and high values of nE could be obtained in modest-size plasmas. Other potential advantages are reactor operation at modest values of , capability of higher power density and wall loading, and possibility of operation with advanced fuel mixtures. Present experimental results and basic scaling relations imply that the parameterB 2a, where B is the magnetic field and a is the minor radius, may be of special importance. A superhigh-field compact ignition experiment with very high values ofB 2a (e.g.,B 2a=150 T2 m) has the potential of Ohmically heating to ignition. This short-pulse device would use inertially cooled copper plate magnets. Compact engineering test reactor and/or experimental hybrid reactor designs would use steady-state, water-cooled copper magnets and provide long-pulse operation. Design concepts are also described for demonstration/commercial reactors. These devices could use high-field superconducting magnets with 7–10 T at the plasma axis.  相似文献   
106.
Conceptual fusion reactor studies over the past 10–15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100–200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed.Nomenclature a Plasma minor radius at outboard equatorial plane (m) - A Plasma aspect ratioR T /a - AC Annual charges ($/yr) - b Plasma minor radius in vertical direction (m) - B Magentic field at plasma or blanket (T) - B c Magnetic field at the coil (T) - B Toroidal magnetic field (T) - B Poloidal magnetic field (T) - BOP Balance of plant - C Coil - COE Cost of electricity (mills/kWeh) - CRFPR Compact RFP reactor - CT Compact torus (FRC or spheromak) - c FPC Unit cost of fusion power core ($/kg) - DC Direct cost ($) - DZP Dense Z-pinch - E Escalation rate (1/yr) - EDC Escalation during construction ($) - ET Elongated tokamak - F Annual fuel charges ($/yr) - FC Component of UDC not strongly dependent or FPC size ($/kWe) - FW First wall - FPC Fusion power core - f Aux Fraction of gross electric power recirculated to BOP - f 1 (IC+IDC+EDC)/DC - f 2 (O&M + SCR + F)/AC - IC Indirect cost ($) - IDC Interest during construction ($) - I w Neutron first-wall loading (MW/m2) - i Toroidal plasma current (MA) - j Plasma current density, I/a2 - k B Boltzmann constant, 1.602(10)–16 (J/keV) - LWR Light-water (fission) reactor - MPD Mass power density 1000PE/MFPC (kWe/tonne) - M N Blanket energy multiplication of 14.1-MeV neutron energy - M FPC Mass of fusion power core (tonne) - n Plasma density (m–3) or toroidal MHD mode number - O&M Annual operating and maintenance cost ($/yr) - p f Plant availability factor - PFD Poloidal field dominated (CTs, RFP, DZP) - P Construction time (yr) - PTH Thermal power (MWt) - P E Net electric power (1-)P ET (MWe) - PET Total gross electric power (MWe) - pf Fusion power (MW) - q Tokamak safety factor (B /B gq )(a/R T ) - q e EngineeringQ value, 1/e - R T Major toroidal radius (m) - RFP Reversed-field pinch - RPE Reactor plant equipment (Account 22) - S Shield - SCR Annual spare component cost ($/yr) - SSR Second stability region for the tokamak - S/T/H Stellarator/torsatron/heliotron - ST Spherical tokamak or spherical torus - T Plasma temperature (keV) - TDC Total direct cost ($) - TOC Total overnight cost ($) - UDC Unit direct cost,TDC/10 3 P E ($/kWe) - V p Plasma volume (m3) - W p Plasma energy (GJ) - W B Magnetic field energy (GJ) - Magnetic utilization efficiency, 2nkBT/(B 2/20) - 0 Permeability of free space, 4(10)–7 H/m - XE Plasma confinement efficiency, a2/4E - e Plasma energy confinement time - p Overall plant efficiency, TH(1-) - TH Thermal conversion efficiency - FPC AverageFPC mass density (tonne/m3) - Plasma vertical elongation factor,b/a - Thickness of allFPC engineering structure surround plasma (m) - Total recirculating power fraction, (P ET-P E)/P ET, or inverse aspect ratioa/R T This work was performed under the auspices of USDOE, Office of Fusion Energy.  相似文献   
107.
The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.  相似文献   
108.
Urolithins (hydroxylated 6H-benzo[c]chromen-6-ones) are the main bioavailable metabolites of ellagic acid (EA), which was shown to be a cognitive enhancer in the treatment of neurodegenerative diseases. As part of this research, a series of alkoxylated 6H-benzo[c]chromen-6-one derivatives were designed and synthesized. Furthermore, their biological activities were evaluated as potential PDE2 inhibitors, and the alkoxylated 6H-benzo[c]chromen-6-one derivative 1f was found to have the optimal inhibitory potential (IC50: 3.67 ± 0.47 μM). It also exhibited comparable activity in comparison to that of BAY 60-7550 in vitro cell level studies.  相似文献   
109.
斜坡道是地下金属矿山的主要运输通道,其道路质量直接影响着矿山的安全运输和经济效益。针对斜坡道混凝土浇筑路面存在的筑路成本高、养护时间长、使用寿命短及维护困难等不足,引入浆土路修筑技术,开展了地下金属矿山斜坡道浆土路筑路材料配比试验、黏土搓条和崩解试验、水洗筛分试验,并在云南卡房分公司完成了浆土路试验路段的修筑。结果表明:浆土路筑路技术能够很好地应用于地下矿山道路修筑,具有施工工艺简单、筑路成本低、施工周期短、承载能力强、抑尘防滑和低碳环保等诸多优点,为地下金属矿山道路修筑提供了工程借鉴,对于矿山降本增效、节能减排及安全高效具有重要的意义。  相似文献   
110.
近2年我国锆铪及锆化学制品雕生产、贸易及研发概况   总被引:1,自引:0,他引:1  
介绍了我国近2年来海绵锆、锆铪制品和锆化学品的生产、进出口概况,以及重要研发进展。我国工业级海绵锆产量从2003年的100t增加到2005年的174t,2005年的销售量达到150t;锆粉与锆-铝消气剂等年产量在10t左右;锆材和锆设备年产量在100t以上;锆化学制品品种有10余种,年产量已达到20×104t。锆砂的沸腾氯化工艺、锆铪的MIBK法分离工艺、以电熔ZrO2为原料制取粗ZrCl2工艺和Al-Y复合ZrO2粉的生产工艺等的研发工作,都取得了突破性进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号