首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29127篇
  免费   2435篇
  国内免费   1331篇
电工技术   894篇
综合类   973篇
化学工业   10588篇
金属工艺   2183篇
机械仪表   350篇
建筑科学   372篇
矿业工程   869篇
能源动力   3713篇
轻工业   732篇
水利工程   35篇
石油天然气   741篇
武器工业   37篇
无线电   2397篇
一般工业技术   6016篇
冶金工业   2231篇
原子能技术   337篇
自动化技术   425篇
  2024年   105篇
  2023年   655篇
  2022年   958篇
  2021年   1259篇
  2020年   1141篇
  2019年   1138篇
  2018年   1046篇
  2017年   1122篇
  2016年   995篇
  2015年   976篇
  2014年   1471篇
  2013年   1655篇
  2012年   1811篇
  2011年   2419篇
  2010年   1792篇
  2009年   1731篇
  2008年   1510篇
  2007年   1676篇
  2006年   1427篇
  2005年   1164篇
  2004年   983篇
  2003年   919篇
  2002年   787篇
  2001年   658篇
  2000年   649篇
  1999年   471篇
  1998年   399篇
  1997年   310篇
  1996年   288篇
  1995年   205篇
  1994年   209篇
  1993年   147篇
  1992年   168篇
  1991年   129篇
  1990年   125篇
  1989年   96篇
  1988年   58篇
  1987年   40篇
  1986年   22篇
  1985年   35篇
  1984年   29篇
  1983年   16篇
  1982年   30篇
  1981年   21篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1959年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Catalyst composites based on Pt and CeO2 on carbon for methanol oxidation were successively prepared for application in direct-methanol fuel cells (DMFCs). In this work, the catalyst was modified by decoration of CeO2 onto several carbons, including carbon black (CB), carbon nanotubes (CNT), graphene oxide (GO), reduced graphene oxide (rGO) and mixed carbons, followed by the electrochemical deposition of Pt. The dispersal of CeO2 and Pt nanoparticles onto the carbon surfaces was confirmed with a face-centred cubic structure. The use of single and mixed carbons takes admirable advantage of the coexisting CeO2 and Pt nanoparticles, confirming the positive effect of various carbon structures for electrocatalytic enhancement towards methanol oxidation. The CeO2 also improves the ability for CO oxidation, resulting in a reduction of CO poisoning. The outcomes show an enhancement of the activity and stability so that such alternative as-prepared materials can be introduced to improve the anodic oxidation in DMFCs.  相似文献   
992.
The tungsten trioxide attracts less attention due to the low electron transfer kinetics that hinders the interaction of electrons and ions during the hydrogen evolution reaction (HER). But the oxygen vacancy strategy can inspire its electrocatalytic activity for HER because it has a positive effect on improving the charge transfer and compensating for the weak hydrogen adsorption of the tungsten trioxide. By synthesizing a series of substoichiometric tungsten oxides, we reveal the linear relationship between the catalytic activity and the content of oxygen vacancies, which indicates that the oxygen vacancy strategy is an achievable route to enhance the HER for metal oxides.  相似文献   
993.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
994.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
995.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
996.
In this work, proton exchange membrane fuel cell cathodes are degraded with accelerated-stress-tests.These PtCo containing cathodes are analyzed at begin-of-life and end-of-test with a dedicated diagnostic procedure. For every individual load point, the oxygen transport resistance and voltage losses due to the formation of platinum oxides were obtained in addition to commonly measured electrochemical surface area, high frequency resistance, as well as cathode ionomer resistance. These data were used to break down the voltage losses into six different contributors. With this break down, performance gains and performance losses were determined at end-of-test. At low current densities, it was found that voltage losses due to degradation are dominated by the loss of specific activity and catalyst surface area - in line with the state-of-the-art knowledge. But by quantifying the losses from platinum oxide formation explicitly, we show that end-of-test an unassigned voltage loss is not only present at highest current densities, but already at low current density. More precisely, the unassigned voltage loss shows a linear increase with decreasing half cell voltage and is independent from the chosen accelerated stress test. As this unassigned loss depends on half cell voltage, it might arise from ionomer adsorption.  相似文献   
997.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
998.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   
999.
WO3 is a potential material candidate for construction of photoanode for solar driven water splitting. In this work, μm-thick porous WO3 photoanode is prepared by depositing a stable ink made of WO3 nanoparticles and Aristoflex velvet polymer in water using the doctor blade technique, followed by a sintering in air. The nature of WO3 nanoparticles, its loading mass on F-doped tin oxide electrode as well as sintering temperature are examined in order to optimize the photocatalytic activity of the resultant WO3 photoanode. The operation of WO3 photoanode is investigated by varying the light illumination direction and light incident intensity as well as changing the nature of the electrolyte. Dissolved tungsten in electrolyte is quantified by ICP-MS providing insights into the influences of electrolyte nature and operating conditions to the corrosion of WO3. It is proposed that the H2O2 and OH. radical generated as by-products of the photo-driven water oxidation on the photoanode surface are harmful species that accelerate the dissolution of WO3.  相似文献   
1000.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号