首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67531篇
  免费   6775篇
  国内免费   3317篇
电工技术   3528篇
技术理论   2篇
综合类   5128篇
化学工业   17011篇
金属工艺   2718篇
机械仪表   2604篇
建筑科学   4832篇
矿业工程   1152篇
能源动力   2839篇
轻工业   9074篇
水利工程   882篇
石油天然气   1394篇
武器工业   321篇
无线电   10670篇
一般工业技术   8932篇
冶金工业   1587篇
原子能技术   1629篇
自动化技术   3320篇
  2024年   234篇
  2023年   964篇
  2022年   1699篇
  2021年   1972篇
  2020年   2095篇
  2019年   1953篇
  2018年   1800篇
  2017年   2362篇
  2016年   2286篇
  2015年   2440篇
  2014年   3566篇
  2013年   3889篇
  2012年   4797篇
  2011年   4806篇
  2010年   3698篇
  2009年   3933篇
  2008年   3465篇
  2007年   4629篇
  2006年   4354篇
  2005年   3827篇
  2004年   3241篇
  2003年   2730篇
  2002年   2410篇
  2001年   1998篇
  2000年   1665篇
  1999年   1281篇
  1998年   986篇
  1997年   802篇
  1996年   679篇
  1995年   590篇
  1994年   542篇
  1993年   425篇
  1992年   361篇
  1991年   304篇
  1990年   206篇
  1989年   147篇
  1988年   108篇
  1987年   85篇
  1986年   77篇
  1985年   55篇
  1984年   53篇
  1983年   25篇
  1982年   15篇
  1981年   11篇
  1980年   16篇
  1979年   7篇
  1978年   6篇
  1974年   6篇
  1959年   5篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
ABSTRACT

In this study, effect of calcium and gypsum on scheelite and fluorite was investigated using sodium oleate as collector. Micro-flotation and contact angle results showed that the adsorption of calcium could inhibit the hydrophobicity of scheelite and fluorite. Moreover, sulfate could enhance the inhibition. FT-IR results showed that calcium could be priori precipitated into calcium oleate and adsorb on mineral surface. The adsorption of calcium could increase the scheelite potential to IEP, while it showed limited effect on fluorite potential. However, the interaction of calcium on scheelite and fluorite in gypsum solution was more complex than that in calcium solution.  相似文献   
23.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
24.
25.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
26.
The goal of the study was to evaluate and compare the physical properties of control, pretreated and densified corn stover, switchgrass, and prairie cord grass samples. Ammonia Fiber Expansion (AFEX) pretreated switchgrass, corn stover, and prairie cord grass samples were densified by using the comPAKco device developed by Federal Machine Company of Fargo, ND. The densified biomass were referred as “PAKs” in this study. All feedstocks were ground into three different grind size of 2, 4 and 8 mm prior to AFEX pretreatment and the impact of grinding on pellet properties was studied. The results showed that the physical properties of AFEX-PAKed material were not influenced by the initial grind size of the feedstocks. The bulk density of the AFEX-PAKed biomass increased by 1.2–6 fold as compared to untreated and AFEX-pretreated materials. The durability of the AFEX-PAKed materials were between 78.25 and 95.2%, indicating that the AFEX-PAKed biomass can be transported easily. To understand the effect of storage on the physical properties of these materials, samples were stored in the ambient condition (20 ± 2 °C and 70 ± 5% relative humidity) for six months. After storage, thermal properties of the biomass did not change but glass transition temperature decreased. The water absorption index and water solubility index of AFEX-treated and AFEX-PAKed biomass showed mixed trends after storage. Moisture content decreased and durability increased upon storage.  相似文献   
27.
28.
Several three-party password authenticated key exchange (3-PAKE) protocols have recently been proposed for heterogeneous wireless sensor networks (HWSN). These are efficient and designed to address security concerns in ad-hoc sensor network applications for a global Internet of Things framework, where a user may request access to sensitive information collected by resource-constrained sensors in clusters managed by gateway nodes. In this paper we first analyze three recently proposed 3-PAKE protocols and discuss their vulnerabilities. Then, based on Radio Frequency Identification technologies we propose a novel 3-PAKE protocol for HWSN applications, with two extensions for additional security features, that is provably secure, efficient and flexible.  相似文献   
29.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
30.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号