首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132518篇
  免费   10303篇
  国内免费   7760篇
电工技术   4609篇
技术理论   2篇
综合类   7365篇
化学工业   39780篇
金属工艺   14552篇
机械仪表   3807篇
建筑科学   3055篇
矿业工程   1911篇
能源动力   4787篇
轻工业   8886篇
水利工程   933篇
石油天然气   4775篇
武器工业   738篇
无线电   12158篇
一般工业技术   22910篇
冶金工业   5285篇
原子能技术   1594篇
自动化技术   13434篇
  2024年   383篇
  2023年   2089篇
  2022年   4155篇
  2021年   4608篇
  2020年   3485篇
  2019年   3255篇
  2018年   3019篇
  2017年   3683篇
  2016年   4359篇
  2015年   4920篇
  2014年   6542篇
  2013年   7461篇
  2012年   8190篇
  2011年   11360篇
  2010年   8828篇
  2009年   9876篇
  2008年   8371篇
  2007年   9310篇
  2006年   8041篇
  2005年   6660篇
  2004年   5738篇
  2003年   5129篇
  2002年   4243篇
  2001年   2880篇
  2000年   2544篇
  1999年   2080篇
  1998年   1625篇
  1997年   1287篇
  1996年   1174篇
  1995年   984篇
  1994年   907篇
  1993年   681篇
  1992年   535篇
  1991年   420篇
  1990年   361篇
  1989年   279篇
  1988年   186篇
  1987年   127篇
  1986年   123篇
  1985年   103篇
  1984年   80篇
  1983年   51篇
  1982年   77篇
  1981年   86篇
  1980年   110篇
  1979年   38篇
  1978年   22篇
  1977年   22篇
  1975年   20篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Structural bonding and bonded repairs of composite materials become more and more important. Understanding the strain within the bondline leads to suitable bonding design. For new design approaches the strain distribution within the bondline has to be analyzed. Thus, often finite element analysis (FE) are used. However, a huge challenge is the availability of reliable material properties for the adhesives and their validation. Previous work has shown that it is possible to measure the small displacements resulting within thin epoxy film adhesives using high resolution digital image correlation (DIC). In this work a 2D DIC setup with a high resolution consumer camera is used to visualize the strain distribution within the bondline over the length of the joint as well as over the adhesive thickness. Therefore, single lap joints with thick aluminum adherends according to ASTM D 5656 are manufactured and tested. Local 2D DIC strain measurements are performed and analyzed. Two different camera setups are used and compared. The evaluation provides reliable material data and enables a look insight the bondline. The results of the full field strain data measured with DIC are compared with numerical simulations. Thus, material models as well as chosen parameters for the adhesive are validated. Compared to extensometers, giving only point-wise information for fixed measuring points, the DIC allows a virtual point-wise inspection along the complete bondline. Furthermore, it allows measuring close to the bondline to reduce the influence of adherend deformation.  相似文献   
102.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   
103.
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.  相似文献   
104.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
105.
Global decrease in crude oil resources and frequent crude oil leaks cause the energy crisis and ecological pollution. The absorption and release of leaked crude oil through absorption materials are a necessary process for environmental protection and recycling. In this article, a CO2-responsive olefin copolymer was obtained by copolymerization of styrene and an amine-containing olefin monomer. The structure of resultant copolymer was characterized by FTIR; thermal properties and CO2-responsive morphology changes were determined by DSC/TGA and SEM, respectively. Copolymers had certain absorption capacity for toluene with absorption rate up to 180.0%. The absorbed toluene could be released upon CO2 stimulation with desorption rate up to 84.6%. The CO2-responsive copolymer could be regenerated through a simple heating process and showed stable absorption–desorption performance even after being recycled for 4 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47439.  相似文献   
106.
NO2 fission is regarded to be the most important initial decomposition process of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). In this study, four CL-20 conformers based on the ε-CL-20 were obtained after the optimization at m062x/cc-pvtz level, and the bond length, bond order and bond dissociation energy of the N-N bonds were examined to investigate the stability of these bonds. In addition, the rate constants and activation energy of the NO2 fission were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that N-N bonds in the case of pseudo-equatorial and axial of nitro groups are the most stable and the least stable, respectively, by evaluating the bond length, bond order and minimum energy path (MEP). The NO2 fission rate constants are affected by not only the stability of N-N bonds but also the repulsion forces from the other nitro groups, and the fission process for pseudo-equatorial positioning of nitro groups is easier to be accelerated due to the increase of the repulsion forces. The decomposition of CL-20 conformer may mainly originate from the fission of the pseudo-equatorial positioning of nitro groups, especially for CL-20 III conformer because of the significant low activation energy.  相似文献   
107.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
108.
Chiral molecules, especially enantiomers and diastereomers of purity > 99 %, present a significant market share within the chemical, pharmaceutical, and flavor industries. Antisolvent precipitations, both batch and semicontinuous operations to serve the current trends in flow chemistry were demonstrated to be environmentally benign and efficient tools in achieving high optical purities. Although salts are known to be insoluble in supercritical CO2, instabilities of the nascent salts were detected and applied for increasing efficiency. Diastereomeric excess values of the crystalline products exceeded 99 % in maximum of three consecutive steps both by repeated resolution with half molar equivalent of the amine to the acid and by direct recrystallization of the salts.  相似文献   
109.
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. In addition, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号