首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15434篇
  免费   1098篇
  国内免费   768篇
电工技术   329篇
综合类   501篇
化学工业   3700篇
金属工艺   1787篇
机械仪表   429篇
建筑科学   34篇
矿业工程   39篇
能源动力   664篇
轻工业   628篇
水利工程   2篇
石油天然气   34篇
武器工业   29篇
无线电   2618篇
一般工业技术   6019篇
冶金工业   185篇
原子能技术   127篇
自动化技术   175篇
  2024年   32篇
  2023年   189篇
  2022年   143篇
  2021年   286篇
  2020年   281篇
  2019年   300篇
  2018年   371篇
  2017年   446篇
  2016年   436篇
  2015年   489篇
  2014年   639篇
  2013年   957篇
  2012年   944篇
  2011年   1457篇
  2010年   1087篇
  2009年   1093篇
  2008年   1025篇
  2007年   1091篇
  2006年   941篇
  2005年   688篇
  2004年   696篇
  2003年   600篇
  2002年   568篇
  2001年   450篇
  2000年   372篇
  1999年   252篇
  1998年   264篇
  1997年   241篇
  1996年   150篇
  1995年   132篇
  1994年   113篇
  1993年   87篇
  1992年   103篇
  1991年   99篇
  1990年   68篇
  1989年   36篇
  1988年   30篇
  1987年   24篇
  1986年   23篇
  1985年   21篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1979年   3篇
  1978年   6篇
  1976年   7篇
  1975年   6篇
  1974年   9篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The development of packaging films based on renewable materials is an important and active area of research today. This is the first extensive study focusing on film‐forming properties of an agrobiomass byproduct, namely, oat spelt arabinoxylan. A plasticizer was needed for cohesive film formation, and glycerol and sorbitol were compared. The tensile properties of the films varied with the type and amount of the polyol. With a 10% (w/w) plasticizer content, the films containing glycerol had higher tensile strength than the films containing sorbitol, but with a 40% plasticizer content, the result was the opposite. Sorbitol‐plasticized films retained their tensile properties better than films with glycerol during 5 months of storage. The films were semicrystalline with similar crystallinity indices of 0.20–0.26. The largest crystallites (9.5 nm) were observed in the film with 40% glycerol. The softening of films with 40% (w/w) glycerol started at a significantly lower relative humidity (RH) than that of the corresponding sorbitol‐containing films. The films with sorbitol also had lower water vapor permeability (WVP) than the films with glycerol. The films plasticized with 10% (w/w) sorbitol had a WVP value of 1.1 g mm/(m2·d·kPa) at the RH gradient of 0/54%. The oxygen permeability of films containing 10% (w/w) glycerol or sorbitol was similar: 3 cm3·μm/(m2·d·kPa) at 50–75% RH. A higher plasticizer content resulted in more permeable films. Permeation of sunflower oil through the films was not detected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
942.
The adhesion of L929 cells to poly(?‐caprolactone) (PCL) nanofibers was successfully improved via coating with polyelectrolyte multilayer thin films (PEMs), which enhanced the potential of this material as a scaffold in tissue engineering applications. With the electrostatic self‐assembly technique, poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4‐styrene sulfonate) (PSS) were formed as four‐bilayer PEMs on electrospun PCL nanofiber mats. Because PDADMAC and PSS are strong polyelectrolytes, they provided stable films with good adhesion on the fibers within a wide pH range suitable for the subsequent processes and conditions. PDADMAC and gelatin were also constructed as four‐bilayer PEMs on top of the PDADMAC‐ and PSS‐coated nanofibers with the expectation that the gelatin would improve the cell adhesion. L929 cells from mouse fibroblasts were then seeded on both uncoated and coated scaffolds to study the cytocompatibility and in vitro cell behavior. It was revealed by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay that both the uncoated and coated nanofiber mats were nontoxic as the cell viability was comparable to that of those cultured in the serum‐free medium that was used as a control. The MTT assay also demonstrated that cells proliferated more efficiently on the coated nanofibers than those on the uncoated ones during the 48‐h culture period. As observed by scanning electron microscopy, the cells spread well on the coated nanofibers, especially when gelatin was incorporated. The surface modification of PCL nanofiber mats described in this research is therefore an effective technique for improving cell adhesion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
943.
Soft coatings are widely used to tailor the surface chemistry of materials without altering their bulk properties. However, the strength of adhesion between the coating and the substrate must be high enough for long‐term applications. This has become a major challenge in the medical field, especially for polymer‐coated stents, mainly due to several coating failures reported after mechanical expansion during clinical implantation. In this work, the applicability of current polymer‐metal adhesion tests to polymer‐coated stents is discussed. The small punch test was proposed as an adhesion test that allows fundamental studies on the adhesion and coating properties. This adhesion test was applied to thin fluorocarbon coatings deposited by plasma on 316L stainless steel.

  相似文献   

944.
Al-C, Al-Fe and Al-Fe-C composite materials have been prepared by high-energy ball milling technique. The electrochemical measurements demonstrated that the Al-Fe-C composites have greatly improved electrochemical performances in comparison with Al, Al-C and Al-Fe anode. For example, Al71Fe9C20 can deliver the reversible capacity of 436 mAh g−1 at first cycle and 255 mAh g−1 at 15th cycle. This improved electrochemical performance could be attributed to the alloying formation of Al with Fe and the buffering effect by the graphite matrix. This suggests that the Al-Fe-C composite has a potential possibility to be developed as an anode material for lithium-ion batteries.  相似文献   
945.
This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, −200 mV and 300 s, respectively, and the scan rate at 50 mV s−1 in the scan range of −200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.  相似文献   
946.
Bismuth selenide thin films were grown on Pt substrate via the route of electrochemical atomic layer epitaxy (ECALE) in this work for the first time. The electrochemical behaviors of Bi and Se on bare Pt, Se on Bi-covered Pt, and Bi on Se-covered Pt were studied by cyclic voltammetry and coulometry. A steady deposition of Bi2Se3 could be attained after negatively stepped adjusting of underpotential deposition (UPD) potentials of Bi and Se on Pt in the first 40 deposition cycles. X-ray diffraction (XRD) analysis indicated that the films were single phase Bi2Se3 compound with orthorhombic structure, and the 2:3 stoichiometric ratio of Bi to Se was verified by EDX quantitative analysis. The optical band gap of the as-deposited Bi2Se3 film was determined as 0.35 eV by Fourier transform infrared spectroscopy (FTIR), which is consistent with that of bulk Bi2Se3 compound.  相似文献   
947.
Al-Ce coatings were deposited on silicon and AA6061 aluminum alloy substrates by DC magnetron sputtering using aluminum in combination with pure cerium targets. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt%). As for the characterization results, an apparent amorphous phase of aluminum oxide with small cerium compounds embedded in the matrix was detected by the X-ray diffraction patterns and HRTEM on the deposited films at 200 W and 4 Pa. At these conditions, AFM and SEM images evidenced crack-free coatings with low-roughness nanometric structures and columnar growth. EIS and Tafel results converged to indicate an inhibition of the corrosion reactions. The film displayed good stability in the aggressive medium and after 1 day of exposure underwent very little degradation. The variations in the impedance and Tafel characteristics were found to occur as a function of cerium content, which provokes important changes in the film protective properties.  相似文献   
948.
The antimony film carbon paste electrode (SbF-CPE) was prepared in situ on the carbon paste substrate electrode as a “mercury-free” electrochemical sensor. Its aptitude for measuring some selected trace heavy metals has been demonstrated in combination with square-wave anodic stripping voltammetry in non-deaerated model solutions of 0.01 M hydrochloric acid with pH 2. Some important operational parameters, such as deposition potential, deposition time, and concentration of antimony ions were optimized, and the electroanalytical performance of the SbF-CPE was critically compared with both bismuth film carbon paste electrode (BiF-CPE) and mercury film carbon paste electrode (MF-CPE) using Cd(II) and Pb(II) as test metal ions. In comparison with BiF-CPE and MF-CPE, the SbF-CPE exhibited superior electroanalytical performance in more acidic medium (pH 2) associated with favorably low hydrogen evolution, improved stripping response for Cd(II), and moreover, stripping signals corresponding to Cd(II) and Pb(II) at the SbF-CPE were slightly narrower than those observed at bismuth and mercury counterparts. In addition, the comparison with antimony film electrode prepared at the glassy carbon substrate electrode displayed higher stripping current response recorded at the SbF-CPE. The newly developed sensor revealed highly linear behavior in the examined concentration range from 5 to 50 μg L−1, with limits of detection (3σ) of 0.8 μg L−1 for Cd(II), and 0.2 μg L−1 for Pb(II) in connection with 120 s deposition step, offering good reproducibility of ±3.8% for Cd(II), and ±1.2% for Pb(II) (30 μg L−1, n = 10). Preliminary experiments disclosed that SbF-CPE and MF-CPE exhibit comparable performance for measuring trace concentration levels of Zn(II) in acidic medium with pH 2, whereas its detection with BiF-CPE was practically impossible. Finally, the practical applicability of SbF-CPE was demonstrated via measuring Cd(II) and Pb(II) in a real water sample.  相似文献   
949.
In this work, a nickel coating with high density nano-scale twins (NT) was synthesized on Q235 steel by using pulsed electrodeposition technique. The effects of NT structure on pitting corrosion resistance and semi-conducting properties of passive films formed on pure Ni in borate buffer solution with chloride ions were investigated by the potentiodynamic polarization measurements and capacitance measurements. The results indicated that the passive films formed on NT coatings showed higher pitting corrosion resistance and a bi-layer semi-conducting structure distribution, comparing with those formed on industrial electrodeposited (IE) nickel. The passive films are p-type semi-conductors at low potentials, but they show an n-type semi-conductor behavior at high potentials. It demonstrated that NT structure decreased vacancy diffusion velocity and slowed down the growth of passive films consequently. This led to the enhancement of pitting resistance for NT nickel.  相似文献   
950.
Transparent BaTiO3:Eu3+ films were prepared via a sol-gel method and dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone (PVP) as modifier viscosity. BaTiO3:Eu3+ films ~500 nm thick, crystallized after thermal treatment at 700 ºC. The powders revealed spherical and rod shape morphology. The optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A preliminary luminescent test provided the properties of the Eu3+ doped BaTiO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号