首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12590篇
  免费   1018篇
  国内免费   547篇
电工技术   218篇
综合类   653篇
化学工业   562篇
金属工艺   1141篇
机械仪表   1028篇
建筑科学   1458篇
矿业工程   1922篇
能源动力   274篇
轻工业   185篇
水利工程   337篇
石油天然气   1801篇
武器工业   65篇
无线电   1261篇
一般工业技术   1089篇
冶金工业   510篇
原子能技术   52篇
自动化技术   1599篇
  2024年   58篇
  2023年   355篇
  2022年   683篇
  2021年   704篇
  2020年   656篇
  2019年   401篇
  2018年   362篇
  2017年   392篇
  2016年   437篇
  2015年   387篇
  2014年   650篇
  2013年   534篇
  2012年   803篇
  2011年   812篇
  2010年   589篇
  2009年   619篇
  2008年   488篇
  2007年   637篇
  2006年   606篇
  2005年   576篇
  2004年   487篇
  2003年   480篇
  2002年   413篇
  2001年   401篇
  2000年   334篇
  1999年   282篇
  1998年   237篇
  1997年   177篇
  1996年   155篇
  1995年   122篇
  1994年   99篇
  1993年   48篇
  1992年   39篇
  1991年   28篇
  1990年   23篇
  1989年   28篇
  1988年   11篇
  1987年   6篇
  1986年   19篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Deep Neural Network (DNN), one of the most powerful machine learning algorithms, is increasingly leveraged to overcome the bottleneck of effectively exploring and analyzing massive data to boost advanced scientific development. It is not a surprise that cloud computing providers offer the cloud-based DNN as an out-of-the-box service. Though there are some benefits from the cloud-based DNN, the interaction mechanism among two or multiple entities in the cloud inevitably induces new privacy risks. This survey presents the most recent findings of privacy attacks and defenses appeared in cloud-based neural network services. We systematically and thoroughly review privacy attacks and defenses in the pipeline of cloud-based DNN service, i.e., data manipulation, training, and prediction. In particular, a new theory, called cloud-based ML privacy game, is extracted from the recently published literature to provide a deep understanding of state-of-the-art research. Finally, the challenges and future work are presented to help researchers to continue to push forward the competitions between privacy attackers and defenders.  相似文献   
72.
Solution-processed copper(I) thiocyanate (CuSCN) typically exhibits low crystallinity with short-range order; the defects result in a high density of trap states that limit the device's performance. Despite the extensive electronic applications of CuSCN, its defect properties are not understood in detail. Through X-ray absorption spectroscopy, pristine CuSCN prepared from the standard diethyl sulfide-based recipe is found to contain under-coordinated Cu atoms, pointing to the presence of SCN vacancies. A defect passivation strategy is introduced by adding solid I2 to the processing solution. At small concentrations, the iodine is found to exist as I which can substitute for the missing SCN ligand, effectively healing the defective sites and restoring the coordination around Cu. Computational study results also verify this point. Applying I2-doped CuSCN as a p-channel in thin-film transistors shows that the hole mobility increases by more than five times at the optimal doping concentration of 0.5 mol.%. Importantly, the on/off current ratio and the subthreshold characteristics also improve as the I2 doping method leads to the defect-healing effect while avoiding the creation of detrimental impurity states. An analysis of the capacitance-voltage characteristics corroborates that the trap state density is reduced upon I2 addition.  相似文献   
73.
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been one of the most established hole transport layers (HTL) in organic solar cells (OSCs) for several decades. However, the presence of PSS ions is known to deteriorate device performance via a number of mechanisms including diffusion to the HTL-active layer interface and unwanted local chemical reactions. In this study, it is shown that PSS ions can also result in local p-doping in the high efficiency donor:non-fullerene acceptor blends – resulting in photocurrent loss. To address these issues, a facile and effective approach is reported to improve the OSC performance through a two-component hole transport layer (HTL) consisting of a self-assembled monolayer of 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and PEDOT:PSS. The power conversion efficiency (PCE) of 17.1% using devices with PEDOT:PSS HTL improved to 17.7% when the PEDOT:PSS/2PACz two-component HTL is used. The improved performance is attributed to the overlaid 2PACz layer preventing the formation of an intermixed p-doped PSS ion rich region (≈5–10 nm) at the bulk heterojunction-HTL contact interface, resulting in decreased recombination losses and improved stability. Moreover, the 2PACz monolayer is also found to reduce electrical shunts that ultimately yield improved performance in large area devices with PCE enhanced from 12.3% to 13.3% in 1 cm2 cells.  相似文献   
74.
Approximate computing is a popular field for low power consumption that is used in several applications like image processing, video processing, multimedia and data mining. This Approximate computing is majorly performed with an arithmetic circuit particular with a multiplier. The multiplier is the most essential element used for approximate computing where the power consumption is majorly based on its performance. There are several researchers are worked on the approximate multiplier for power reduction for a few decades, but the design of low power approximate multiplier is not so easy. This seems a bigger challenge for digital industries to design an approximate multiplier with low power and minimum error rate with higher accuracy. To overcome these issues, the digital circuits are applied to the Deep Learning (DL) approaches for higher accuracy. In recent times, DL is the method that is used for higher learning and prediction accuracy in several fields. Therefore, the Long Short-Term Memory (LSTM) is a popular time series DL method is used in this work for approximate computing. To provide an optimal solution, the LSTM is combined with a meta-heuristics Jellyfish search optimisation technique to design an input aware deep learning-based approximate multiplier (DLAM). In this work, the jelly optimised LSTM model is used to enhance the error metrics performance of the Approximate multiplier. The optimal hyperparameters of the LSTM model are identified by jelly search optimisation. This fine-tuning is used to obtain an optimal solution to perform an LSTM with higher accuracy. The proposed pre-trained LSTM model is used to generate approximate design libraries for the different truncation levels as a function of area, delay, power and error metrics. The experimental results on an 8-bit multiplier with an image processing application shows that the proposed approximate computing multiplier achieved a superior area and power reduction with very good results on error rates.  相似文献   
75.
Skin lesions have become a critical illness worldwide, and the earlier identification of skin lesions using dermoscopic images can raise the survival rate. Classification of the skin lesion from those dermoscopic images will be a tedious task. The accuracy of the classification of skin lesions is improved by the use of deep learning models. Recently, convolutional neural networks (CNN) have been established in this domain, and their techniques are extremely established for feature extraction, leading to enhanced classification. With this motivation, this study focuses on the design of artificial intelligence (AI) based solutions, particularly deep learning (DL) algorithms, to distinguish malignant skin lesions from benign lesions in dermoscopic images. This study presents an automated skin lesion detection and classification technique utilizing optimized stacked sparse autoencoder (OSSAE) based feature extractor with backpropagation neural network (BPNN), named the OSSAE-BPNN technique. The proposed technique contains a multi-level thresholding based segmentation technique for detecting the affected lesion region. In addition, the OSSAE based feature extractor and BPNN based classifier are employed for skin lesion diagnosis. Moreover, the parameter tuning of the SSAE model is carried out by the use of sea gull optimization (SGO) algorithm. To showcase the enhanced outcomes of the OSSAE-BPNN model, a comprehensive experimental analysis is performed on the benchmark dataset. The experimental findings demonstrated that the OSSAE-BPNN approach outperformed other current strategies in terms of several assessment metrics.  相似文献   
76.
生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设计了基于DCGAN的双流视频生成网络,用来生成视频的动态前景、静态后景与时空掩模三个部分,并以随机噪声驱动生成不同的视频。方案中的发送方可设定隐写阈值,在掩模中自适应地生成数字化卡登格,并将其作为隐写与提取的密钥;同时以前景作为载体,实现信息的最优嵌入。实验结果表明,该方案生成的含密视频具有良好的视觉质量,Frechet Inception距离(FID)值为90,且嵌入容量优于现有的生成式隐写方案,最高可达0.11 bpp,能够更高效地传输秘密消息。  相似文献   
77.
Earthwork operations are crucial parts of most construction projects. Heavy construction equipment and workers are often required to work in limited workspaces simultaneously. Struck-by accidents resulting from poor worker and equipment interactions account for a large proportion of accidents and fatalities on construction sites. The emerging technologies based on computer vision and artificial intelligence offer an opportunity to enhance construction safety through advanced monitoring utilizing site cameras. A crucial pre-requisite to the development of safety monitoring applications is the ability to identify accurately and localize the position of the equipment and its critical components in 3D space. This study proposes a workflow for excavator 3D pose estimation based on deep learning using RGB images. In the proposed workflow, an articulated 3D digital twin of an excavator is used to generate the necessary data for training a 3D pose estimation model. In addition, a method for generating hybrid datasets (simulation and laboratory) for adapting the 3D pose estimation model for various scenarios with different camera parameters is proposed. Evaluations prove the capability of the workflow in estimating the 3D pose of excavators. The study concludes by discussing the limitations and future research opportunities.  相似文献   
78.
The rapid development of network communication along with the drastic increase in the number of smart devices has triggered a surge in network traffic, which can contain private data and in turn affect user privacy. Recently, Federated Learning (FL) has been proposed in Intrusion Detection Systems (IDS) to ensure attack detection, privacy preservation, and cost reduction, which are crucial issues in traditional centralized machine-learning-based IDS. However, FL-based approaches still exhibit vulnerabilities that can be exploited by adversaries to compromise user data. At the same time, meta-models (including the blending models) have been recognized as one of the solutions to improve generalization for attack detection and classification since they enhance generalization and predictive performances by combining multiple base models. Therefore, in this paper, we propose a Federated Blending model-driven IDS framework for the Internet of Things (IoT) and Industrial IoT (IIoT), called F-BIDS, in order to further protect the privacy of existing ML-based IDS. The proposition consists of a Decision Tree (DT) and Random Forest (RF) as base classifiers to first produce the meta-data. Then, the meta-classifier, which is a Neural Networks (NN) model, uses the meta-data during the federated training step, and finally, it makes the final classification on the test set. Specifically, in contrast to the classical FL approaches, the federated meta-classifier is trained on the meta-data (composite data) instead of user-sensitive data to further enhance privacy. To evaluate the performance of F-BIDS, we used the most recent and open cyber-security datasets, called Edge-IIoTset (published in 2022) and InSDN (in 2020). We chose these datasets because they are recent datasets and contain a large amount of network traffic including both malicious and benign traffic.  相似文献   
79.
Continuously improving the ability to accept distributed renewable energies is the trend of future grid development, and a large number of papers have been published in recent years to study the problem of Volt-VAR control (VVC) for distribution networks with high penetration of distributed generations. This paper summarizes the relevant modeling and solution methods for VVC problems, mainly including VVC based on multiple time scales, hierarchical partitioning, multi-stage and network reconstruction, in conjunction with the operational characteristics of distribution networks containing distributed renewable energies; meanwhile, it analyzes the advantages and disadvantages of traditional optimization methods, heuristic intelligent algorithms and random variable processing methods used to solve VVC problems, and then introduces the application of model-free deep reinforcement learning as a latest decision method in VVC of distribution networks. Most of the models and methods compiled in this article are from the research results of the last three years and have some reference value.  相似文献   
80.
隋金坪  刘振  刘丽  黎湘 《雷达学报》2022,11(3):418-433
雷达辐射源信号分选是雷达信号侦察的关键技术之一,同时也是战场态势感知的重要环节。该文系统梳理了雷达辐射源信号分选的主流技术,从基于脉间调制特征、基于脉内调制特征、基于机器学习的雷达辐射源信号分选3个角度阐述了目前雷达辐射源信号分选工作的主要研究方向及进展,并重点阐释了基于深度神经网络、数据流聚类等最新分选技术的原理与特点。最后,对现有雷达辐射源信号分选技术的不足进行了总结并对未来趋势进行了预测。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号