首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11478篇
  免费   690篇
  国内免费   261篇
电工技术   26篇
技术理论   1篇
综合类   229篇
化学工业   5894篇
金属工艺   2607篇
机械仪表   574篇
建筑科学   142篇
矿业工程   94篇
能源动力   145篇
轻工业   199篇
水利工程   9篇
石油天然气   25篇
武器工业   32篇
无线电   375篇
一般工业技术   1720篇
冶金工业   263篇
原子能技术   47篇
自动化技术   47篇
  2024年   26篇
  2023年   205篇
  2022年   191篇
  2021年   338篇
  2020年   349篇
  2019年   305篇
  2018年   323篇
  2017年   276篇
  2016年   256篇
  2015年   291篇
  2014年   546篇
  2013年   639篇
  2012年   659篇
  2011年   918篇
  2010年   759篇
  2009年   653篇
  2008年   695篇
  2007年   748篇
  2006年   797篇
  2005年   658篇
  2004年   573篇
  2003年   409篇
  2002年   286篇
  2001年   236篇
  2000年   212篇
  1999年   226篇
  1998年   226篇
  1997年   156篇
  1996年   109篇
  1995年   91篇
  1994年   66篇
  1993年   49篇
  1992年   42篇
  1991年   35篇
  1990年   22篇
  1989年   22篇
  1988年   12篇
  1987年   5篇
  1986年   10篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Surface resistivity of carbonaceous fiber/PTFE antistatic coatings   总被引:1,自引:0,他引:1  
Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the carbonaceous fibers were investigated. The carbonaceous fibers/PTFE (Polytetrafluoroethylene) antistatic coatings were prepared by the spraying technology and the effects of carbonaceous fibers and pigments on surface resistivity of the coatings were systematically discussed. Micrographs provide insight into the antistatic mechanism of the coating. The results show that carbon content of the carbonaceous fibers increases from 68.8% to 74.8% (mass fraction) and the volume resistivity decreases drastically from 1.94× 10^-3 to 8.27× 10 ^-2.cm. The surface resistivity of the antistatic coating is adjustable between 10^5 and 10^8Ω2 to fit the different antistatic materials. Static is dissipated by a conductive network of short fibers and the tunneling effect between the neighboring fibers and conductive pigments. Conductive pigments make the conductive network more perfect and improve the antistatic ability, but insulating pigments acting as barriers for the formation of conductive channel increases the surface resistivity of the coatings. The influence of pigments on the surface resistivity drops gradually with the decrease of the carbonaceous fibers volume resistivity.  相似文献   
172.
The K[AlSi2O6]-Cs[AlSi2O6] pseudo-binary system was synthesized by geopolymer crystallization. The thermal expansion properties of these materials were studied by in situ high-temperature X-ray diffraction to characterize thermal expansion behavior for potential application as environmental barrier coatings. Tailorable thermal expansion through changing cation stoichiometry allowed reduced thermal expansion mismatch with SiCf/SiC composites compared to rare-earth-based coatings.  相似文献   
173.
The high-temperature interaction between ~2.5 mg/cm2 of Na2SO4 and an atmospheric plasma sprayed (APS) Yb2Si2O7 topcoat–Si bond coat system on SiC CMC substrates was studied for times up to 240 h at 1000°C–1316°C in a 0.1% SO2–O2 gaseous environment. Yb2Si2O7 reacted with Na2SO4 to form Yb2SiO5 and an intergranular amorphous Na-silicate phase. Below 1200°C, the reaction was sluggish, needing days to cause morphological changes to the “splat microstructure” associated with APS coatings. The reaction was rapid at 1200°C and above, needing only a few hours for the entire topcoat to transform into a granulated microstructure consisting of Yb2SiO5 and Yb2Si2O7 phases. Na2SO4 deposits infiltrated the Yb2Si2O7 topcoat and transformed into an amorphous Na-silicate in less than 1 h at all exposure temperatures. Quantitative assessment of the Yb2SiO5 area fraction in the topcoat showed a linear decrease over time at 1316°C, attributed to reaction with the SiO2 thermally grown oxide (TGO) formed on the Si bond coat and rapid transport through the interpenetrating amorphous Na-silicate grain boundary phase. It was predicted that nearly 2 weeks is needed for complete removal of Yb2SiO5 from the topcoat at 1316°C for a single applied loading of Na2SO4.  相似文献   
174.
Surface-modified Zr alloy claddings with advanced ceramic coatings are promising materials for accident-tolerant fuel (ATF) systems to meet stringent safety regulations concerning light water reactors. The applications of ceramic coatings are, however, limited as a result of inferior thermal stability when used in conjunction with Zircaloy-4 (Zry-4) substrates. Herein, the thermal stability of sub-stoichiometric zirconium carbide barrier layers as a function of composition was studied. Integrated ceramic coatings comprising ZrC0.55 diffusion barriers and a Cr2AlC top layer were synthesized via a magnetron sputtering method. After rapid thermal annealing, the ZrC0.55 barrier layer having a thickness of 0.5 μm effectively prevented the inter-diffusion between Cr2AlC and the Zry-4 substrate, thereby ensuring retention of the structural integrity of the integrated ceramic coating system for ATF applications.  相似文献   
175.
Mechanochemical degradation by planetary ball milling (PM) is used for postpolymerization modification of styrene homopolymers (PS). A complete factorial design was chosen to study the effect of radical scavengers, milling time, initial molecular weight, and revolution radius (Rp), on the shape of molecular weight distributions (MWDs) of PS. Size-exclusion chromatography analysis shows the feasibility of fine-tuning MWD of PS at up to 40% conversion. Distributions ranged from unimodal to bimodal in a PM with Rp = 150 mm at different stage of milling, whereas in a PM with Rp of 60.8 mm the adjustment of unimodal distributions is achieved. Initial polydispersity is more important to develop bimodal distributions when compared with initial molecular weight. Fourier transform infrared and X-ray electron spectrometry analysis show some suppression of PS degradation and complete oxidation inhibition of macromolecular radicals with the incorporation of radical scavengers, which we considered as additional aids when adjusting the MWDs.  相似文献   
176.
A waste material called oil fly ash (OFA) was acid-functionalized, yielding f-OFA-COOH, which was then reacted with cerium oxide (CeO2) to make CeO2-functionalized OFA, or f-OFA-CeO2. Pristine OFA and f-OFA-CeO2 were used to make waterborne polyurethane (WBPU) dispersions, referred to as WBPU/OFA and WBPU/f-OFA-CeO2, respectively, with defined OFA and f-OFA-CeO2 content. All the dispersions were applied to mild steel as organic coatings to evaluate their protective properties, such as their hydrophobicity, adhesive strength and UV-shielding resistance. These protective properties varied based on the OFA and f-OFA-CeO2 content. The highest water contact angle, minimum water swelling and maximum adhesive strength were found using WBPU/f-OFA-CeO2-20 coating (using 2.00 wt% f-OFA-CeO2), which also showed the maximum ultraviolet (UV) absorption via UV–vis spectroscopy analysis. This UV shielding result also matched field test results, as that coating was found to exhibit the lowest UV degradation near a marine atmosphere, as shown by X-ray photoelectron spectroscopy (XPS) analysis. The least affected hydrophobicity was also recorded for the sample with the WBPU/f-OFA-CeO2-20 coating.  相似文献   
177.
In this work, a novel graphene oxide (GO)-fly ash cenospheres (FACs) hybrid fillers was introduced to improve the wear and corrosive resistance of epoxy resin (ER) composite coatings. The tribological behavior and the corrosion performance of three kinds of coatings (pure ER, GO/ER and GO-FACs/ER coatings) were studied and the reinforced mechanisms of coatings filled by different fillers were analyzed. The friction coefficient and wear rate of the ER coatings were decreased with the addition of GO-FACs hybrids. The scanning electron microscope images showed that the dispersibility and compatibility of GO-FACs hybrids were effectively improved compared with that of GO sheet. The water contact angle examination indicated that the hydrophobicity of the GO-FACs/ER coatings increased. The electrochemical impedance spectroscopy (EIS) results demonstrated that the GO-FACs/ER coatings have better anticorrosion performance compared with the pure ER coatings and the GO/ER coatings. The hydrophobic surface and the well dispersed fillers constitute the dual barrier to resist the corrosion medium.  相似文献   
178.
A hybrid polymer matrix composite coating, resistant to solid particle erosion inside sharp elbows, consisting interlocking chains of molecules with the ability to deflect the surface impact stress and to uniformly distribute stresses along the hard-ceramic reinforcement mixture surface was developed. Formulated mixture of ceramic reinforcement particles mixtures (alumina, tungsten carbide, and silicon carbide) with polymer coupling agents; to increase adhesion to the metal surface, led to 600–700 HVN in ternary and 500–550 HVN in binary mixtures. This behavior coincides with high shear strength of 70–76 MPa, Young's and shear modulus of 8.86 and 13.4 GPa in ternary 15%Al2O3-5%WC-10%SiC, respectively. The low erosion weight loss of 0.1% and small coefficient of friction near 0.18 indicates the significant wear resistance of the ternary sample. The electron microscopic micrographs determined the dense smooth coating surfaces with adhesive interfaces with the substrate.  相似文献   
179.
Homogenous waterborne polyurethane/polyacrylate emulsions were synthesized based on the prepared polyurethane and polyacrylate through a facile process. The attention was attracted to the miscibility and performance of waterborne polyurethane and polyacrylate. The structures and properties of waterborne polyurethane and waterborne polyurethane/polyacrylate samples were characterized by using Fourier transform infrared spectroscopy, transmission electron microscope, X-ray photoelectron spectroscopy, X-ray diffractometer, thermogravimetric, and so forth, as well as solid content and tensile testing. The results showed that the micro morphology of waterborne polyurethane/polyacrylate emulsion presented single-phase structure with the stoichiometric polyacrylate content increasing from 33% to 80% to waterborne polyurethane. The waterborne polyurethane/polyacrylate films surface is rich in polyacrylate phase. Meanwhile, waterborne polyurethane/polyacrylate composites showed significant improvement in thermal stability and elongation at break, smaller particle size and narrower particle size distribution comparing with waterborne polyurethane.  相似文献   
180.
Marine biofouling had been a headache when engaging in marine activities. The most effective and convenient method for dealing with this problem was to apply antifouling coatings. But now a single anti-fouling system was hard to satisfy the requirement of anti-fouling simultaneously. Therefore, it was particularly important to develop novel multi-system anti-fouling technology. In the work, a novel polymer coatings with polydimethylsiloxane (PDMS) segments in the main chain and hydrolysable side chain was designed and synthesized which showed low surface energy and self-polishing performance, and then we creatively covalently immobilized the polyurethane on the surface of multi-carbon nanotubes (MWNTs) to form multisystem antifouling coating. The results showed that the polymer coating would produce hydrolysable regions in the hydrophobic PDMS segment to endure the polymer coating hydrophobic and hydrolysis properties when contacted with water. In addition, the self-polishing rate and the surface energy could be regulated by varying its copolymerization, and the addition of MWNTs could kill the microorganisms and endowed the polymer coating itself enhanced antibacterial effect. Furthermore, considering the high specific surface area and physicochemical characteristics of MWNTs, it could be combined with antifoulant Cu2O through a polar or non-polar combination as a carrier to control the release rate of Cu2O in coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号