This paper reports adsorption measurements that show molecular sieve effects in amorphous hydrogenated carbon (a-C : H) films deposited by d.c. magnetron discharge decomposition of acetylene. Adsorption of organic gases on the films is studied by using a quartz crystal microbalance technique. The sieve effect in this material depends on both deposition and annealing conditions. Films having significant molecular sieve effects are found to be typically microporous and to have a very small characteristic micropore dimension. It is suggested that the d.c. sputtered a-C : H film may be useful as a molecular sieve material in selective adsorption and gas permeation studies. 相似文献
The dynamic mechanical relaxation of non-crystalline poly(aryl ether-ether-ketone) PEEK and the one irradiated with electron beam were studied. The three distinct γ, β, α′ relaxation maxima were observed in unirradiated PEEK from low to high temperature. It was revealed from the study on the irradiation effects that three different molecular processes are overlapped in γ relaxation peak, i.e., molecular motion of water bound to main chain (peak temperature; at ?100°C), local motion of main chain (at ?80°C), and local mode of the aligned and/or oriented moiety (at ?40°C). The β relaxation connected with the glass transition occurred at 150°C and it shifted to higher temperature by irradiation. The α′ relaxation which can be attributed to rearrangement of molecular chain due to crystallization was observed in unirradiated PEEK ~ 180°C and its magnitude decreased with the increase in irradiation dose. This effect indicates the formation of structures inhibiting crystallization such as crosslinking and/or short branching during irradiation. A new relaxation, β′, appeared in the temperature range of 40° to 100°C by irradiation and its magnitude increased with dose. This relaxation was attributed to rearrangement of molecular chain from loosened packing around chain ends, which were introduced into the non-crystalline region by chain scission under irradiation, to more rigid molecular packing, From these observations, we proposed that deterioration in mechanical properties of non-crystalline PEEK by high energy electron beam was brought about not only by chain scission but structural changes such as crosslinking and/or branching in the main chain. 相似文献
Microgrooves were prepared on Si(100) surface by photolithography and wet etching.Subsequently,Si-N-O films were deposited on the microgrooves by unbalanced magnetron sputtering(UBMS) and micro-patterned surfaces of Si-N-O films were obtained.The size of the micropatterns was measured by surface profilometer.The chemical composition of Si-N-O films were characterized by X-ray photoelectron spectrometry(XPS) and the wettability of the micropatterned surfaces was evaluated by contact angle measurement.The beh... 相似文献
Highly ion-conductive solid polymer electrolyte (SPE) based on polyethylene (PE) non-woven matrix is prepared by filling poly(ethylene glycol) (PEG)-based crosslinked electrolyte inside the pores of the non-woven matrix. The PE non-woven matrix not only shows good mechanical strength for SPE to be a free-standing film, but also has very porous structure for high ion conductivity. The ion conductivity of SPE based on PE non-woven matrix can be enhanced by adding sufficient non-volatile plasticizer such as poly(ethylene glycol) dimethyl ether (PEGDME) into ion conduction phase without sacrificing mechanical strength. SPE with 20 wt.% crosslinking agent and 80 wt.% non-volatile plasticizer shows 3.1 × 10−4 S cm−1 at room temperature (20 °C), to our knowledge, which is the highest level for SPEs. It is also electrochemically stable up to 5.2 V and has high transference number about 0.52 due to the introduction of anion receptor as an additive. The interfacial resistance between Li electrode and SPE is low enough to perform charge/discharge test of unit cell consisting of LiCoO2/SPE/Li at room temperature. The discharge capacity of the unit cell shows 87% of theoretical value with 86% Coulombic efficiency. 相似文献
The oxidation of iron and manganese by ozone was studied in the laboratory. Model waters both with and without organic matter were used. Results showed iron to be very rapidly oxidized to an insoluble form in the absence of organic matter. However, in the presence of organic matter the iron was protected from oxidation by ozone and precipitation. The degree to which this occurred depended on the nature of the organic matter and the chemical environment at the time of mixing the iron stock and the dissolved organic matter.
Experiments with manganese allowed the determination of second order rate constants for the reaction of ozone with manganese at various pH values. The oxidation of manganese in the presence of organic matter occurred in competition with oxidation of the organic matter. As a result, high ozone doses were required to achieve the same degree of removal of manganese. An increase in bicarbonate alkalinity from 50 mg/L to 200 mg/L did not result in an acceleration of the manganese oxidation in the absence of organic matter. However, in the presence of organic matter, higher levels of bicarbonate created conditions that resulted in more complete oxidation of the manganese following total consumption of the dosed ozone. 相似文献