首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   673篇
  免费   6篇
  国内免费   18篇
电工技术   4篇
综合类   1篇
化学工业   226篇
金属工艺   87篇
机械仪表   9篇
建筑科学   2篇
矿业工程   1篇
能源动力   80篇
轻工业   10篇
石油天然气   1篇
无线电   33篇
一般工业技术   222篇
冶金工业   5篇
原子能技术   4篇
自动化技术   12篇
  2023年   14篇
  2022年   23篇
  2021年   12篇
  2020年   17篇
  2019年   19篇
  2018年   19篇
  2017年   20篇
  2016年   17篇
  2015年   13篇
  2014年   41篇
  2013年   45篇
  2012年   36篇
  2011年   98篇
  2010年   53篇
  2009年   74篇
  2008年   52篇
  2007年   42篇
  2006年   30篇
  2005年   15篇
  2004年   17篇
  2003年   13篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1987年   1篇
排序方式: 共有697条查询结果,搜索用时 0 毫秒
41.
An analytical method for analyzing high-resolution transmission electron microscopy (HRTEM) images is presented. The method is composed of two major parts: digital image processing and lattice fringe characterization. The digital image processing is composed of the following operations: negative transformation, region of interest (ROI) selection, contrast enhancement, Gaussian lowpass filter, top-hat transformation (used to correct uneven illumination across an image), thresholding to obtain a binary image, morphological modification, clearing fringes on the ROI border, skeletonization, and removing short fringes that lack physical meaning. These operations are defined by equations with effects illustrated by images. The lattice fringe characterization generates statistics on fringe length, tortuosity, and separation based on the skeletons of the graphene layers. Fringe length and tortuosity are obtained automatically from the features of the skeletons, while fringe separation is obtained by analyzing manually selected fringe pairs. The algorithms are implemented within MATLAB, and demonstrated upon an exemplary HRTEM image of carbonaceous material. The image analysis algorithm permits quantitative HRTEM, here specifically addressing nanostructure of carbonaceous materials.  相似文献   
42.
The mechanical property and microstructure evolutions of Ni3Al intermetallic compound subjected to surface mechanical attrition treatment (SMAT) were investigated in relation to surface nanocrystalization. Grain size in topmost surface of SMATed Ni3Al alloy was refined to a minimum size of about 10 nm, and then increased with the enhancement of the depth from surface to matrix. The original ordered L12 phase transformed to Ni (Al) solid solution with a disordered face-centered cubic structure. The maximum nanohardness of the deformed Ni3Al alloy was near 12 GPa. The microstructure evolution including the variation of defects during the SMAT as well as post-annealing processes showed that the surface nanocrystallization of Ni3Al intermetallic compound was predominantly controlled by dislocations which divided the coarse grains. The different microstructures at each sublayer illustrated that the nanocrystallization process was decided by the accumulated energy resulted from plastic strain.  相似文献   
43.
In this paper we present a study on the relation between the evolution, upon successive H2 cycling, of the crystalline order and the H2 sorption properties of Pd-capped textured Mg thin films grown on Si and glass substrates.  相似文献   
44.
Cu particles with different architectures such as pyramid, cube, and multipod have been successfully fabricated on the surface of Au films, which is the polycrystalline Au substrate with (111) domains, using the electrodeposition technique in the presence of the surface-capping reagents of dodecylbenzene sulfonic acid and poly(vinylpyrrolidone). Further, the growth evolution of pyramidal Cu nanoparticles was observed for the first time. We believe that our method might open new possibilities for fabricating nanomaterials of non-noble transition metals with various novel architectures, which can then potentially be utilized in applications such as biosensors, catalysis, photovoltaic cells, and electronic nanodevices.  相似文献   
45.
Doped and undoped hematite films for photoelectrochemical hydrogen production were prepared by spin-coating deposition solution (SCDS). To understand the influence of the Si-doping and identify the critical parameters of the proposed SCDS method an extensive characterization was conducted. The Si-doped hematite exhibited higher photocurrent response when compared with undoped films. We have shown that the crystallographic orientation degree of the films appears to be a dominant factor affecting the photocurrent. The performance of our hematite electrodes is well below the maximum theoretical efficiency and the conceivable explanation could be given by the high value of recombination phenomena (electron/hole pair).  相似文献   
46.
CaRuO3-CaTiO3 ceramic composites were prepared by sintering for short times for potential applications in the areas of electronic ceramics. Scanning electron microscopy and energy dispersive X-ray analysis showed two separate phases, CaRuO3 and CaTiO3 in the composite. Conductivity data, measured by the four-probe method, showed that the composites have high electrical conductivity when x ≥ 0.19 in xCaRuO3-(1 − x)CaTiO3 composites. Furthermore, the nanoparticle of calcium ruthenate prepared by reverse micelle synthesis was used to be conductive agent for the composite. The result shows that the use of nano-sized calcium ruthenate enabled higher electrical conductivity to be maintained down to x = 0.09.  相似文献   
47.
A newly developed route for the synthesis of hollow carbon nanospheres without introducing template under hydrothermal conditions was reported. Hollow carbon nanospheres with the diameter of about 100 nm were synthesized using alginate as reagent only. Many instruments were applied to characterize the morphologies and structures of carbon hollow nanospheres, such as XRD, TEM, and Raman spectroscopy. The possible formation and growth mechanism of carbon hollow spheres were discussed on the basis of the investigation of reaction influence factors, such as temperature, time, and content. The findings would be useful for the synthesis of more materials with hollow structure and for the potential use in many aspects. The loading of SnO2 on the surface of carbon hollow spheres was processed, and its PL property was also characterized.  相似文献   
48.
Nanostructured thin films of lead sulfide have been synthesized by a new electrochemical approach based on the underpotential deposition (UPD) of Pb and S from the saturated solution of PbS containing excess of PbS particles as a source of Pb2+ and S2− at various temperatures.We have demonstrated that this new electrochemical route is a simple method with several advantages, including better control of the growth conditions and a one-step process to obtain the nanostructures of PbS. Scanning probe microscopy studies indicate that the growth of PbS nanofilms follows a two-dimensional layer-by-layer growth kinetics at the beginning of electrodeposition but a three-dimensional growth dominates after the formation of the first few layers. The results of morphological and structural investigations reveal that PbS nanostructures grown by this method are single-crystalline in cubic structure and have a preferential orientation along the [2 0 0] direction. The optical absorption spectra of PbS nanostructures show the blue-shift with respect to those of the bulk counterpart, which are attributed as quantum-size effect.  相似文献   
49.
50.
The electronic structures of ZnO nanoparticles and microrod arrays are studied by O 1s X-ray absorption spectroscopy (XAS) and O Kα X-ray emission spectroscopy (XES). We show that the present LDA+USIC calculation approach is suitable to correct the LDA self-interaction error of the cation d-states. The atomic eigenstates of 3d in zinc and 2p in oxygen are energetically close, which induces strong Zn-3d-O-2p hybridization. This anomalous valence band cation-d-anion-p hybridization is affected when the localization of the Zn 3d-states is taken into account. Experimentally, the XES spectra show energy dependence in the spectral shape revealing selected excitations to the Zn 3d, 4s and 4p states, hybridized with O 2p states. Strong anisotropic effects are observed for the highly oriented ZnO rods, but not for the isotropic spherical nanoparticles. The nanostructured ZnO has primarily bulk XAS and XES properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号