首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23713篇
  免费   1419篇
  国内免费   1415篇
电工技术   481篇
技术理论   1篇
综合类   1005篇
化学工业   6461篇
金属工艺   6938篇
机械仪表   1174篇
建筑科学   1099篇
矿业工程   304篇
能源动力   559篇
轻工业   1422篇
水利工程   68篇
石油天然气   562篇
武器工业   211篇
无线电   836篇
一般工业技术   4079篇
冶金工业   1051篇
原子能技术   141篇
自动化技术   155篇
  2024年   129篇
  2023年   481篇
  2022年   695篇
  2021年   746篇
  2020年   687篇
  2019年   683篇
  2018年   688篇
  2017年   858篇
  2016年   747篇
  2015年   773篇
  2014年   1150篇
  2013年   1233篇
  2012年   1536篇
  2011年   1803篇
  2010年   1434篇
  2009年   1401篇
  2008年   1145篇
  2007年   1455篇
  2006年   1474篇
  2005年   1222篇
  2004年   1090篇
  2003年   871篇
  2002年   782篇
  2001年   624篇
  2000年   579篇
  1999年   428篇
  1998年   392篇
  1997年   293篇
  1996年   265篇
  1995年   213篇
  1994年   171篇
  1993年   149篇
  1992年   125篇
  1991年   64篇
  1990年   48篇
  1989年   48篇
  1988年   19篇
  1987年   6篇
  1986年   13篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1976年   1篇
  1959年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
151.
采用等离子熔覆法在Mn13高锰钢上制备了低碳Fe-Ni合金层。以熔覆电流、喷头移动速率、离子气流量和热处理温度作为输入参数,以冲击韧性作为输出参数,建立了BP(误差反向传播)神经网络模型和粒子群算法优化(PSO)BP神经网络模型,并跟冲击韧性与热处理温度之间的线性回归模型进行对比。结果表明,线性回归模型、BP神经网络模型和PSO-BP模型的平均相对误差分别为7.06%、6.12%和3.03%。PSO-BP模型的预测结果与实测值的误差较小。  相似文献   
152.
针对热镀锌板表面聚酯型粉末涂层附着力异常的问题,对比了涂层脱落和正常前处理的基材表面形貌、元素组成、清洁度和红外光谱,得出涂层附着力异常的原因为基材表面在喷涂前发生氧化和油污未除净,给出了相应的解决措施。  相似文献   
153.
Crude oil spill accidents pose a worldwide environmental threat. Oleophilic and hydrophobic absorbents that can selectively absorb oil from water have shown promising application potential in oil spill remediation. Simultaneous optimization of the absorption and desorption speed of absorbents towards oil is highly desirable for their recyclable usage, but remains a great challenge, because these two properties are generally conflicting. Here, a facile and ingenious strategy is proposed to tackle the above challenge via surface modification of porous sponges with highly flexible linear polydimethylsiloxane (LPDMS) brushes. The LPDMS brushes feature liquid-like properties at room temperature owing to its extremely low glass transition temperature, and act as a covalently-grafted lubrication layer throughout the 3D network channels of the sponge, which can minimize contact angle hysteresis and reduce friction between oil and sponge channel. Compared to the prevalent cross-linked polydimethylsiloxane (CPDMS) modification strategy, sponges modified with LPDMS brushes not only shows significantly enhanced absorption speed, but also exhibits superior desorption dynamics towards viscous crude oils. The design strategy of slippery sponges with liquid-like molecules may open a new avenue for developing advanced absorbents with simultaneously enhanced absorption and desorption performances for liquid separation and purification applications.  相似文献   
154.
Marine antifouling coating using functional polymers has emerged as an important tool to combat marine fouling. Owing to their natural abundance, polysaccharides represent a more sustainable option than synthetic polymers and carrageenan, a sulfated polysaccharide, is identified as a promising candidate for further research based on its excellent marine antifouling properties. However, existing research has only explored the application of carrageenan-based coatings for 2D objects, using techniques such as spin-coating. Here, a spray-coating method is proposed to apply carrageenan-based coatings to the surfaces of 2- and 3-D objects. The coated surfaces exhibit high stability under various chemical/physical stresses and high resistance to protein adsorption and marine diatom adhesion.  相似文献   
155.
Development of industrialization has brought convenience to people's lives; however, it has also brought serious harm to the environment, where, water pollution is the most obvious. Here, a polybutylene adipate terephthalate (PBAT) open-cell foam doped with iron-pillared bentonite (IPB) is prepared by using sugar as a pore-forming agent and solution phase separation, and then combined with a solution dipping method to coat the foam surface with a polyacrylamide/SiO2, which makes the PBAT foam superhydrophilic. The static adsorption effect of superhydrophilic IPB-doped PBAT open-cell foam on methylene blue (MB) and Cu2+ is studied. The adsorption isotherm fitting shows that the adsorption conforms to the Langmuir model and it has biased toward monolayer adsorption. The adsorption kinetics fitting confirms that the adsorption process is in line with the pseudo-second-order adsorption model, which is dominated by chemical adsorption. The modified PBAT open-cell foam has an adsorption effect on Cu2+; however, it has weak cyclic adsorption capacity. It shows a good cyclic adsorption ability for the cationic dye MB and it has >95% photodegradation efficiency of the MB after five time's cyclic adsorption. The superhydrophilicity makes the foam to have better applications in oil–water separation.  相似文献   
156.
In this study, a kind of imidazole type poly(ionic liquid) ([PEP-MIM]Cl) is synthesized, which can disperse carbon effectively. [PEP-MIM]Cl is used as an intermediate to coat carbon on the poly(acrylic acid)(PAA-co-MBA) via ion exchange to obtain conductive polymer composite (CPC). A series of characterizations are performed. Experiments show that carbon can be coated on the PAA-co-MBA uniformly, and compared with using carbon as filler, this method requires less carbon to achieve good conductive performance. The carbon layer on the polymer's surface is enriched via the swelling-shrinking properties of PAA-co-MBA according to the SEM images. Furthermore, in combination with 3D printing technology, PAA-co-MBA can be designed into different shapes to achieve various functions such as pressure-sensing element. Finally, a new type of CPC named carbon clad polymeric laminate (CCPL) is prepared by using the carbon coating method and 3D printing technology. It has the potential to replace copper clad laminate (CCL) and printed circuit board (PCB), to a certain extent. This technology expands the preparation method and application of the CPC such as flexible and wearable conductive fabrics.  相似文献   
157.
Several studies have been undertaken recently to adapt yttria partially stabilized zirconia (YPSZ) thermal barrier coating (TBC) characteristics during their manufacturing process. Thermal spraying implementing laser irradiation appears to be a possibility for modifying the coating morphology. This study aims to present the results of in situ (i.e., simultaneous treatment) and a posteriori (i.e., post-treatment) laser treatments implementing a high-power laser diode. In both cases, the coatings underwent atmospheric plasma spraying (APS). Laser irradiation was achieved using a 3 kW, average-power laser diode exhibiting an 848 nm wavelength. Experiments were performed to reach two goals. First, laser post-treatments aimed at building a map of the laser-processing parameter effects on the coating microstructure to estimate the laser-processing parameters, which seem to be suited to the change into in situ coating remelting. Second, in situ coating remelting aimed at quantifying the involved phenomena. In that case, the coating was treated layer by layer as it was manufactured. The input energy effect was studied by varying the scanning velocity (i.e., between 35 and 60 m/min), and consequently the irradiation time (i.e., between 1.8 and 3.1 ms, respectively). Experiments showed that coating thermal conductivity was lowered by more than 20% and that coating resistance to isothermal shocks was increased very significantly.  相似文献   
158.
The microstructural features of cold-sprayed coatings were investigated using Cu, Ti and Zn feedstocks by optical microscopy, scanning electron microscopy and transmission electron microscopy to reveal the microstructure evolution mechanisms in cold spray. Four typical effects including tamping, refinement, impact-induced fusion and annealing were examined on microstrueture. It is found that the microstructure of cold spray coating is remarkably influenced by spray materials. Ti coatings consist of evident porous layer and Cu coatings present a limited porous layer only near the surface. It is clear that the successive tamping effect and dynamic refinement of grains significantly influence the microstructure evolution of cold-sprayed coating. The tamping effect leads to the densification of porous coating layer gradually and the refinement effect leads to the formation of fine microstructure. It is considered that the large difference in the formation of porous layer is attributed to the dynamic impact pressure and hardenability of materials. It is also found that the impact-induced fusion during deposition of Zn coating can also modify the interfacial microstructure between particles in cold spray coating. Moreover, the nanocrystalline phase can be formed at the interfaces among particles resulting from the localized melting of the interfaces and tamping effect. Furthermore, the annealing treatment can modify the microstructure and property of a cold-sprayed coating.  相似文献   
159.
本文对比分析了四种不同粘结剂制备的镍铬铁铝氮化硼复合粉末及涂层性能, 结果表明: A3 粘结剂的固 化性能和热降解性能与镍铬铁铝氮化硼复合粉末的粉末制备工艺及喷涂工艺匹配性良好, 制备的复合粉末的形貌 和性能较优, 以此制备的封严涂层组织均匀, 硬度为 62 HR15Y, 结合强度为 7.99 MPa, 耐盐浴腐蚀性能良好。  相似文献   
160.
La2Ce2O7(LC) 和 LaMgAl11O19(LMA) 是两种新型热障涂层材料。 LC 具有优良的热物理及抗腐蚀性能, 但 其断裂韧性差。 LMA 具有良好的综合性能, 特别是力学性能优良。 基于复合材料设计理念, 为充分利用 LC 和 LMA 的优势, 本文探究了制备 LMA-LC 双相复合陶瓷的可行性。 采用高温固相法合成了 LMA 和 LC 粉末, 重 点研究了 LMA 和 LC 的高温稳定性, 初步研究了 LMA-LC 复合陶瓷块材的力学性能。 结果表明: LMA 和 LC 在 高温下发生了化学反应, 反应程度随温度升高而加剧, 主要反应产物为 LaAlO3, 其在低温下的铁弹性可能是复 合陶瓷在室温下具有良好力学性能的原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号